@article{ZNSL_2024_533_a4,
author = {M. N. Demchenko},
title = {Existence of a solution to the nonhomogeneous ultrahyperbolic equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {77--100},
year = {2024},
volume = {533},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a4/}
}
M. N. Demchenko. Existence of a solution to the nonhomogeneous ultrahyperbolic equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 77-100. http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a4/
[1] A. S. Blagoveschenskii, “O nekotorykh novykh korrektnykh zadachakh dlya volnovogo uravneniya”, Trudy V Vsesoyuznogo simpoziuma po difraktsii i rasprostraneniyu voln (1970), Nauka, L., 1971, 29–35
[2] P. Laks, R. Fillips, Teoriya rasseyaniya, Mir, M., 1971
[3] H. E. Moses, R. T. Prosser, “Acoustic and Electromagnetic Bullets: Derivation of New Exact Solutions of the Acoustic and Maxwell's Equations”, SIAM J. Appl. Math., 50:5 (1990), 1325–1340 | DOI | MR | Zbl
[4] A. P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya (obzor)”, Optika i spektroskopiya, 102:4 (2007), 661–681
[5] A. B. Plachenov, “Vyrazhenie energii akusticheskogo, elektromagnitnogo i uprugogo volnovogo polya cherez ego asimptotiku na bolshikh vremenakh i rasstoyaniyakh”, Zap. nauchn. semin. POMI, 493, 2020, 269–287
[6] M. I. Belishev, A. F. Vakulenko, “Ob odnoi zadache upravleniya dlya volnovogo uravneniya v ${\mathbb R}^3$”, Zap. nauchn. semin. POMI, 332, 2006, 19–37 | Zbl
[7] A. S. Blagoveschenskii, “O kharakteristicheskoi zadache dlya ultragiperbolicheskogo uravneniya”, Matem. sb., 63:105:1 (1964), 137–168
[8] M. A. Semenov-Tyan-Shanskii, “Garmonicheskii analiz na rimanovykh simmetricheskikh prostranstvakh otritsatelnoi krivizny i teoriya rasseyaniya”, DAN SSSR, 219:6 (1974), 1330–1333 | Zbl
[9] Georges de Rham, “Solution élémentaire d'opérateurs différentiels du second ordre”, Annales de l'institut Fourier, 8 (1958), 337–366 | DOI | MR | Zbl
[10] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, M., 1959
[11] A. Melin, “Intertwining methods in the problem of inverse scattering”, Journées Équations aux dérivées partielles, 1986, 1–8 | MR
[12] A. Holst, A. Melin, “Intertwining Operators in Inverse Scattering”, New Analytic and Geometric Methods in Inverse Problems, eds. Bingham K., Kurylev Y.V., Somersalo E., Springer, Berlin–Heidelberg, 2004 | MR | Zbl
[13] M. N. Demchenko, “The analogues of advanced and retarded fundamental solutions for ultrahyperbolic equation”, Proceedings of the International Conference Days on Diffraction, 2023, 36–39
[14] N. Ortner, P. Wagner, “Fourier transformation of O(p, q)-invariant distributions. Fundamental solutions of ultra-hyperbolic operators”, J. Math. Anal. Appl., 450 (2017), 262–292 | DOI | MR | Zbl
[15] M. N. Demchenko, “Suschestvovanie resheniya zadachi rasseyaniya dlya ultragiperbolicheskogo uravneniya”, Zap. nauchn. semin. POMI, 521, 2023, 79–94
[16] M. N. Demchenko, “On the scattering problem for the nonhomogeneous ultrahyperbolic equation”, Proceedings of the International Conference Days on Diffraction, 2024 (to appear)
[17] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986
[18] M. N. Demchenko, “Asimptoticheskie svoistva reshenii odnogo ultragiperbolicheskogo uravneniya”, Zap. nauchn. semin. POMI, 516, 2022, 40–64