Existence of a solution to the nonhomogeneous ultrahyperbolic equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 77-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The nonhomogeneous ultrahyperbolic equation in ${\mathbb R}^d\times{\mathbb R}^n$ is considered. An additional condition prescribing the behavior of a solution to the equation at the infinity is proposed. It is proved that the problem for the equation in consideration with such a condition is not overdetermined. The solution is given in a form of a singular integral, and the corresponding asymptotics is found with the use of the stationary phase method.
@article{ZNSL_2024_533_a4,
     author = {M. N. Demchenko},
     title = {Existence of a solution to the nonhomogeneous ultrahyperbolic equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {77--100},
     year = {2024},
     volume = {533},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a4/}
}
TY  - JOUR
AU  - M. N. Demchenko
TI  - Existence of a solution to the nonhomogeneous ultrahyperbolic equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 77
EP  - 100
VL  - 533
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a4/
LA  - ru
ID  - ZNSL_2024_533_a4
ER  - 
%0 Journal Article
%A M. N. Demchenko
%T Existence of a solution to the nonhomogeneous ultrahyperbolic equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 77-100
%V 533
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a4/
%G ru
%F ZNSL_2024_533_a4
M. N. Demchenko. Existence of a solution to the nonhomogeneous ultrahyperbolic equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 77-100. http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a4/

[1] A. S. Blagoveschenskii, “O nekotorykh novykh korrektnykh zadachakh dlya volnovogo uravneniya”, Trudy V Vsesoyuznogo simpoziuma po difraktsii i rasprostraneniyu voln (1970), Nauka, L., 1971, 29–35

[2] P. Laks, R. Fillips, Teoriya rasseyaniya, Mir, M., 1971

[3] H. E. Moses, R. T. Prosser, “Acoustic and Electromagnetic Bullets: Derivation of New Exact Solutions of the Acoustic and Maxwell's Equations”, SIAM J. Appl. Math., 50:5 (1990), 1325–1340 | DOI | MR | Zbl

[4] A. P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya (obzor)”, Optika i spektroskopiya, 102:4 (2007), 661–681

[5] A. B. Plachenov, “Vyrazhenie energii akusticheskogo, elektromagnitnogo i uprugogo volnovogo polya cherez ego asimptotiku na bolshikh vremenakh i rasstoyaniyakh”, Zap. nauchn. semin. POMI, 493, 2020, 269–287

[6] M. I. Belishev, A. F. Vakulenko, “Ob odnoi zadache upravleniya dlya volnovogo uravneniya v ${\mathbb R}^3$”, Zap. nauchn. semin. POMI, 332, 2006, 19–37 | Zbl

[7] A. S. Blagoveschenskii, “O kharakteristicheskoi zadache dlya ultragiperbolicheskogo uravneniya”, Matem. sb., 63:105:1 (1964), 137–168

[8] M. A. Semenov-Tyan-Shanskii, “Garmonicheskii analiz na rimanovykh simmetricheskikh prostranstvakh otritsatelnoi krivizny i teoriya rasseyaniya”, DAN SSSR, 219:6 (1974), 1330–1333 | Zbl

[9] Georges de Rham, “Solution élémentaire d'opérateurs différentiels du second ordre”, Annales de l'institut Fourier, 8 (1958), 337–366 | DOI | MR | Zbl

[10] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, M., 1959

[11] A. Melin, “Intertwining methods in the problem of inverse scattering”, Journées Équations aux dérivées partielles, 1986, 1–8 | MR

[12] A. Holst, A. Melin, “Intertwining Operators in Inverse Scattering”, New Analytic and Geometric Methods in Inverse Problems, eds. Bingham K., Kurylev Y.V., Somersalo E., Springer, Berlin–Heidelberg, 2004 | MR | Zbl

[13] M. N. Demchenko, “The analogues of advanced and retarded fundamental solutions for ultrahyperbolic equation”, Proceedings of the International Conference Days on Diffraction, 2023, 36–39

[14] N. Ortner, P. Wagner, “Fourier transformation of O(p, q)-invariant distributions. Fundamental solutions of ultra-hyperbolic operators”, J. Math. Anal. Appl., 450 (2017), 262–292 | DOI | MR | Zbl

[15] M. N. Demchenko, “Suschestvovanie resheniya zadachi rasseyaniya dlya ultragiperbolicheskogo uravneniya”, Zap. nauchn. semin. POMI, 521, 2023, 79–94

[16] M. N. Demchenko, “On the scattering problem for the nonhomogeneous ultrahyperbolic equation”, Proceedings of the International Conference Days on Diffraction, 2024 (to appear)

[17] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986

[18] M. N. Demchenko, “Asimptoticheskie svoistva reshenii odnogo ultragiperbolicheskogo uravneniya”, Zap. nauchn. semin. POMI, 516, 2022, 40–64