Three-dimensional inverse acoustic scattering problem by the BC-method
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 55-76
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\Sigma:=[0,\infty)\times S^2$, $\mathscr F:=L_2(\Sigma)$. The forward acoustic scattering problem under consideration is to find $u=u^f(x,t)$ satisfying 
\begin{align*}  {tt}-\Delta u+qu=0,  (x,t) \in {\mathbb R}^3 \times (-\infty,\infty); \tag{48}\\
 \mid_{|x|-t} =0 ,  t0; \tag{49}\\
\lim_{s \to -\infty} s u((-s+\tau) \omega,s)=f(\tau,\omega),  (\tau,\omega) \in \Sigma; \tag{50}
\end{align*} 
for a real valued compactly supported potential $q\in L_\infty(\mathbb R^3)$ and a control $f \in\mathscr F$. The response operator $R: \mathscr F\to\mathscr F$, \begin{align*}  (Rf)(\tau ,\omega ) := \lim_{s \to +\infty} s u^f((s+\tau ) \omega ,s), (\tau ,\omega ) \in \Sigma \end{align*} depends on $q$ locally: if $\xi>0$ and $f\in\mathscr F^\xi:=\{f\in\mathscr F | f \mid_{[0,\xi)}=0\}$ holds, then the values $(Rf) \mid_{\tau\geqslant\xi}$ are determined by $q \mid_{|x|\geqslant\xi}$ (do not depend on $q \mid_{|x|\xi}$). The inverse problem is: for an arbitrarily fixed $\xi>0$, to determine $q\mid_{|x|\geqslant\xi}$ from $X^\xi R\upharpoonright\mathscr F^\xi$, where $X^\xi$ is the projection in $\mathscr F$ onto $\mathscr F^\xi$. It is solved by a relevant version of the boundary control method. The key point of the approach are recent results on the controllability of the system (48)–(50).
			
            
            
            
          
        
      @article{ZNSL_2024_533_a3,
     author = {M. I. Belishev and A. F. Vakulenko},
     title = {Three-dimensional inverse acoustic scattering problem by the {BC-method}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--76},
     publisher = {mathdoc},
     volume = {533},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a3/}
}
                      
                      
                    TY - JOUR AU - M. I. Belishev AU - A. F. Vakulenko TI - Three-dimensional inverse acoustic scattering problem by the BC-method JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 55 EP - 76 VL - 533 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a3/ LA - ru ID - ZNSL_2024_533_a3 ER -
M. I. Belishev; A. F. Vakulenko. Three-dimensional inverse acoustic scattering problem by the BC-method. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 55-76. http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a3/