Three-dimensional inverse acoustic scattering problem by the BC-method
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 55-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\Sigma:=[0,\infty)\times S^2$, $\mathscr F:=L_2(\Sigma)$. The forward acoustic scattering problem under consideration is to find $u=u^f(x,t)$ satisfying \begin{align*} &u_{tt}-\Delta u+qu=0, && (x,t) \in {\mathbb R}^3 \times (-\infty,\infty); \tag{48}\\ &u \mid_{|x|<-t} =0 , && t<0; \tag{49}\\ &\lim_{s \to -\infty} s u((-s+\tau) \omega,s)=f(\tau,\omega), && (\tau,\omega) \in \Sigma; \tag{50} \end{align*} for a real valued compactly supported potential $q\in L_\infty(\mathbb R^3)$ and a control $f \in\mathscr F$. The response operator $R: \mathscr F\to\mathscr F$, \begin{align*} & (Rf)(\tau ,\omega ) := \lim_{s \to +\infty} s u^f((s+\tau ) \omega ,s), (\tau ,\omega ) \in \Sigma \end{align*} depends on $q$ locally: if $\xi>0$ and $f\in\mathscr F^\xi:=\{f\in\mathscr F | f \mid_{[0,\xi)}=0\}$ holds, then the values $(Rf) \mid_{\tau\geqslant\xi}$ are determined by $q \mid_{|x|\geqslant\xi}$ (do not depend on $q \mid_{|x|<\xi}$). The inverse problem is: for an arbitrarily fixed $\xi>0$, to determine $q\mid_{|x|\geqslant\xi}$ from $X^\xi R\upharpoonright\mathscr F^\xi$, where $X^\xi$ is the projection in $\mathscr F$ onto $\mathscr F^\xi$. It is solved by a relevant version of the boundary control method. The key point of the approach are recent results on the controllability of the system (48)–(50).
@article{ZNSL_2024_533_a3,
     author = {M. I. Belishev and A. F. Vakulenko},
     title = {Three-dimensional inverse acoustic scattering problem by the {BC-method}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--76},
     year = {2024},
     volume = {533},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a3/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - A. F. Vakulenko
TI  - Three-dimensional inverse acoustic scattering problem by the BC-method
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 55
EP  - 76
VL  - 533
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a3/
LA  - ru
ID  - ZNSL_2024_533_a3
ER  - 
%0 Journal Article
%A M. I. Belishev
%A A. F. Vakulenko
%T Three-dimensional inverse acoustic scattering problem by the BC-method
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 55-76
%V 533
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a3/
%G ru
%F ZNSL_2024_533_a3
M. I. Belishev; A. F. Vakulenko. Three-dimensional inverse acoustic scattering problem by the BC-method. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 55-76. http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a3/

[1] S. A. Avdonin, M. I. Belishev, S. A. Ivanov, “Upravlyaemost v zapolnennoi oblasti dlya mnogomernogo volnovogo uravneniya s singulyarnym upravleniem”, Zap. nauchn. semin. POMI, 210, 1994, 3–14

[2] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl

[3] M. I. Belishev, “Granichnoe upravlenie i tomografiya rimanovykh mnogoobrazii”, Uspekhi matem. nauk, 72:4(436) (2017), 3–66 | DOI | MR | Zbl

[4] M. I. Belishev, “New Notions and Constructions of the Boundary Control Method”, Inverse Problems and Imaging, 16:6 (2022), 1447–1471 | DOI | MR | Zbl

[5] M. I. Belishev, V. Yu. Gotlib, “Dynamical variant of the BC-method: theory and numerical testing”, J. Inverse and Ill-Posed Problems, 7:3 (1999), 221–240 | DOI | MR | Zbl

[6] M. I. Belishev, I. B. Ivanov, I. V. Kubyshkin, V. S. Semenov, “Numerical testing in determination of sound speed from a part of boundary by the BC-method”, J. Inverse and Ill-Posed Problems, 24:2 (2016), 159–180 | DOI | MR | Zbl

[7] M. I. Belishev, A. P. Kachalov, “Operatornyi integral v mnogomernoi spektralnoi obratnoi zadache”, Zap. nauchn. semin. POMI, 215, 1994, 9–37 | Zbl

[8] M. I. Belishev, D. V. Korikov, “On Characterization of Hilbert Transform of Riemannian Surface with Boundary”, Complex Analysis and Operator Theory, 16:10 (2022) | MR

[9] M. I. Belishev, A. Simonov, “Treugolnaya faktorizatsiya i funktsionalnye modeli operatorov i sistem”, Algebra i analiz, 36:5 (2024), 1–28

[10] M. I. Belishev, A. F. Vakulenko, “Ob odnoi zadache upravleniya dlya volnovogo uravneniya v $R^3$”, Zap. nauchn. semin. POMI, 332, 2006, 19–73

[11] M. I. Belishev, A. F. Vakulenko, “Reachable and unreachable sets in the scattering problem for acoustical equation in $\mathbb R^3$”, SIAM J. Math. Analysis, 39:6 (2008), 1821–1850 | DOI | MR | Zbl

[12] M. I. Belishev, A. F. Vakulenko, “Inverse scattering problem for the wave equation with locally perturbed centrifugal potential”, J. Inverse and Ill-Posed Problems, 17:2 (2009), 127–157 | DOI | MR | Zbl

[13] M. I. Belishev, A. F. Vakulenko, “$s$-points in three-dimensional acoustical scattering”, SIAM J. Math. Analysis, 42:6 (2010), 2703–2720 | DOI | MR | Zbl

[14] M. I. Belishev, A. F. Vakulenko, “On characterization of inverse data in the boundary control method”, Rend. Istit. Mat. Univ. Trieste, 48 (2016), 1–29 | MR

[15] M. I. Belishev, A. F. Vakulenko, “Ob upravlyaemosti dinamicheskoi sistemy akusticheskogo rasseyaniya v $\mathbb R^3$”, Zap. nauchn. semin. POMI, 2024 | Zbl

[16] M. S. Brodskii, Treugolnye i zhordanovy predstavleniya lineinykh operatorov, Nauka, M., 1969

[17] I. Ts. Gokhberg, M. G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967

[18] R. Kalman, P. Falb, M. Arbib, Ocherki po matematicheskoi teorii sistem, Mir, M., 1971 | MR

[19] P. Laks, K. Fillips, Teoriya rasseyaniya, Mir, M., 1971

[20] V. M. Filatova, V. V. Nosikova, L. N. Pestov, S. N. Sergeev, “Visualization of reflected and scattered waves by the boundary control method”, Zap. nauchn. semin. POMI, 521, 2023, 200–211 | MR

[21] Rakesh and G. Uhlmann, Uniqueness for the inverse backscattering problem for angularly controlled potentials, 12 Feb 2014, arXiv: 1307.0877v2 [math.AP] | MR

[22] J. H. Rose, M. Cheney, and B. DeFacio, “Determination of the Wave Field from Scattering Data”, Physical Revew Letters, 57:7, 783–786 | DOI | MR