Mc'Kean's transformation for 3-rd order operators
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 44-54

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a non-self-adjoint third order operator with 1-periodic coefficients. Integrating the Boussinesq equation on a circle requires solving the inverse spectral problem for this operator. In 1981, McKean introduced a transformation that reduces the spectral problem for this operator to the spectral problem for the Hill operator with a potential that depends analytically on the energy. In the present paper we are studying this transformation.
@article{ZNSL_2024_533_a2,
     author = {A. V. Badanin and E. L. Korotyaev},
     title = {Mc'Kean's transformation for 3-rd order operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {44--54},
     publisher = {mathdoc},
     volume = {533},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a2/}
}
TY  - JOUR
AU  - A. V. Badanin
AU  - E. L. Korotyaev
TI  - Mc'Kean's transformation for 3-rd order operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 44
EP  - 54
VL  - 533
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a2/
LA  - ru
ID  - ZNSL_2024_533_a2
ER  - 
%0 Journal Article
%A A. V. Badanin
%A E. L. Korotyaev
%T Mc'Kean's transformation for 3-rd order operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 44-54
%V 533
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a2/
%G ru
%F ZNSL_2024_533_a2
A. V. Badanin; E. L. Korotyaev. Mc'Kean's transformation for 3-rd order operators. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 44-54. http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a2/