@article{ZNSL_2024_533_a11,
author = {V. V. Sukhanov},
title = {Collapse in the asymptotics of the solution to the complex {Korteweg-de} {Vries} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {186--194},
year = {2024},
volume = {533},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a11/}
}
V. V. Sukhanov. Collapse in the asymptotics of the solution to the complex Korteweg-de Vries equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 186-194. http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a11/
[1] V. E. Zakharov, S. V. Manakov, “Asymptotic behavior of non-linear wave systems integrated by the inverse scattering method”, JETP, 44:1 (1976), 106 | MR
[2] V. S. Buslaev, V. V. Sukhanov, “Asymptotic behavior of solutions of the Korteweg-de Vries equation for the large times”, J. Sov. Math., 34:5 (1986), 1905–1920 | DOI | MR
[3] P. Deift, X. Zhou, “A Steepest Descent Method for Oscillatory Riemann–Hilbert Problems. Asymptotics for the MKdV Equation”, Annals Math., Second Series, 137:2 (1993), 295–368 | DOI | MR | Zbl
[4] A. R. Its, “Isomonodromy" solutions of equations of zero curvature”, Math. USSR Izvestiya, 26:3 (1986), 497–529 | DOI | MR | Zbl
[5] V. Yu. Novokshenov, “Asymptotics of the solution of the Cauchy problem for nonlinear Schrödinger equation as $t \to \infty$”, Dokl. Acad. Nauk SSSR, 251:4 (1980), 799–801 | MR
[6] P. Deift, S. Venakides, X. Zhou, “The collisionless shock region for the long-time behavior of solutions of the KdV equation”, Comm. Pure Appl. Math., 47:2 (1994), 199–206 | DOI | MR | Zbl