Collapse in the asymptotics of the solution to the complex Korteweg-de Vries equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 186-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The work is devoted to the study of the asymptotic behavior of solutions to the Cauchy problem for the Korteweg-de Vries equation $u_t=u_{xxx}+6uu_x$ with complex initial data. It was found that, in contrast to the real solution, the asymptotic behavior of the complex solution in the dispersion region has collapses. The paper analyzes the asymptotic solution in the vicinity of such a point.
@article{ZNSL_2024_533_a11,
     author = {V. V. Sukhanov},
     title = {Collapse in the asymptotics of the solution to the complex {Korteweg-de} {Vries} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {186--194},
     year = {2024},
     volume = {533},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a11/}
}
TY  - JOUR
AU  - V. V. Sukhanov
TI  - Collapse in the asymptotics of the solution to the complex Korteweg-de Vries equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 186
EP  - 194
VL  - 533
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a11/
LA  - ru
ID  - ZNSL_2024_533_a11
ER  - 
%0 Journal Article
%A V. V. Sukhanov
%T Collapse in the asymptotics of the solution to the complex Korteweg-de Vries equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 186-194
%V 533
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a11/
%G ru
%F ZNSL_2024_533_a11
V. V. Sukhanov. Collapse in the asymptotics of the solution to the complex Korteweg-de Vries equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 186-194. http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a11/

[1] V. E. Zakharov, S. V. Manakov, “Asymptotic behavior of non-linear wave systems integrated by the inverse scattering method”, JETP, 44:1 (1976), 106 | MR

[2] V. S. Buslaev, V. V. Sukhanov, “Asymptotic behavior of solutions of the Korteweg-de Vries equation for the large times”, J. Sov. Math., 34:5 (1986), 1905–1920 | DOI | MR

[3] P. Deift, X. Zhou, “A Steepest Descent Method for Oscillatory Riemann–Hilbert Problems. Asymptotics for the MKdV Equation”, Annals Math., Second Series, 137:2 (1993), 295–368 | DOI | MR | Zbl

[4] A. R. Its, “Isomonodromy" solutions of equations of zero curvature”, Math. USSR Izvestiya, 26:3 (1986), 497–529 | DOI | MR | Zbl

[5] V. Yu. Novokshenov, “Asymptotics of the solution of the Cauchy problem for nonlinear Schrödinger equation as $t \to \infty$”, Dokl. Acad. Nauk SSSR, 251:4 (1980), 799–801 | MR

[6] P. Deift, S. Venakides, X. Zhou, “The collisionless shock region for the long-time behavior of solutions of the KdV equation”, Comm. Pure Appl. Math., 47:2 (1994), 199–206 | DOI | MR | Zbl