Collapse in the asymptotics of the solution to the complex Korteweg-de Vries equation
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 186-194
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The work is devoted to the study of the asymptotic behavior of solutions to the Cauchy problem for the Korteweg-de Vries equation $u_t=u_{xxx}+6uu_x$ with complex initial data. It was found that, in contrast to the real solution, the asymptotic behavior of the complex solution in the dispersion region has collapses. The paper analyzes the asymptotic solution in the vicinity of such a point.
			
            
            
            
          
        
      @article{ZNSL_2024_533_a11,
     author = {V. V. Sukhanov},
     title = {Collapse in the asymptotics of the solution to the complex {Korteweg-de} {Vries} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {186--194},
     publisher = {mathdoc},
     volume = {533},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a11/}
}
                      
                      
                    TY - JOUR AU - V. V. Sukhanov TI - Collapse in the asymptotics of the solution to the complex Korteweg-de Vries equation JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 186 EP - 194 VL - 533 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a11/ LA - ru ID - ZNSL_2024_533_a11 ER -
V. V. Sukhanov. Collapse in the asymptotics of the solution to the complex Korteweg-de Vries equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 186-194. http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a11/