Dynamic plane deformation of semi-infinite polygonal plate: Kostrov's ``paradox'' and its amendment
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 170-185

Voir la notice de l'article provenant de la source Math-Net.Ru

Under dynamic loading of a concave isotropic wedge the usual formulas which express the displacement field through two potentials and applies for any convex wedge, lead to a strong singularity at the vertex and need to be improved (so-called Kostrov's correction). For an unbounded isotropic and homogeneous plane polygonal body, we derive a construction of the potentials providing true singularities of the displacement field in vertices of several “entering” corners. We also correct inaccuracies found in previous publications.
@article{ZNSL_2024_533_a10,
     author = {S. A. Nazarov},
     title = {Dynamic plane deformation of semi-infinite polygonal plate: {Kostrov's} ``paradox'' and its amendment},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {170--185},
     publisher = {mathdoc},
     volume = {533},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a10/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Dynamic plane deformation of semi-infinite polygonal plate: Kostrov's ``paradox'' and its amendment
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 170
EP  - 185
VL  - 533
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a10/
LA  - ru
ID  - ZNSL_2024_533_a10
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Dynamic plane deformation of semi-infinite polygonal plate: Kostrov's ``paradox'' and its amendment
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 170-185
%V 533
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a10/
%G ru
%F ZNSL_2024_533_a10
S. A. Nazarov. Dynamic plane deformation of semi-infinite polygonal plate: Kostrov's ``paradox'' and its amendment. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 170-185. http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a10/