Dynamic plane deformation of semi-infinite polygonal plate: Kostrov's ``paradox'' and its amendment
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 170-185
Voir la notice de l'article provenant de la source Math-Net.Ru
Under dynamic loading of a concave isotropic wedge the usual formulas which express the displacement field through two potentials and applies for any convex wedge, lead to a strong singularity at the vertex and need to be improved (so-called Kostrov's correction). For an unbounded isotropic and homogeneous plane polygonal body, we derive a construction of the potentials providing true singularities of the displacement field in vertices of several “entering” corners. We also correct inaccuracies found in previous publications.
@article{ZNSL_2024_533_a10,
author = {S. A. Nazarov},
title = {Dynamic plane deformation of semi-infinite polygonal plate: {Kostrov's} ``paradox'' and its amendment},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {170--185},
publisher = {mathdoc},
volume = {533},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a10/}
}
TY - JOUR AU - S. A. Nazarov TI - Dynamic plane deformation of semi-infinite polygonal plate: Kostrov's ``paradox'' and its amendment JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 170 EP - 185 VL - 533 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a10/ LA - ru ID - ZNSL_2024_533_a10 ER -
S. A. Nazarov. Dynamic plane deformation of semi-infinite polygonal plate: Kostrov's ``paradox'' and its amendment. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 170-185. http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a10/