Diffraction by a strongly elongated compound spheroid
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 5-14

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates the high-frequency field in the problem of diffraction by a strongly elongated spheroidal body, part of the surface of which is acoustically soft and the other part is acoustically hard. Numerical results for the case of axial incidence are presented.
@article{ZNSL_2024_533_a0,
     author = {I. V. Andronov},
     title = {Diffraction by a strongly elongated compound spheroid},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {533},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a0/}
}
TY  - JOUR
AU  - I. V. Andronov
TI  - Diffraction by a strongly elongated compound spheroid
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 5
EP  - 14
VL  - 533
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a0/
LA  - ru
ID  - ZNSL_2024_533_a0
ER  - 
%0 Journal Article
%A I. V. Andronov
%T Diffraction by a strongly elongated compound spheroid
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 5-14
%V 533
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a0/
%G ru
%F ZNSL_2024_533_a0
I. V. Andronov. Diffraction by a strongly elongated compound spheroid. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 54, Tome 533 (2024), pp. 5-14. http://geodesic.mathdoc.fr/item/ZNSL_2024_533_a0/