Root vectors in quantum groups
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 212-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We propose a definition of root vectors in a finite dimensional quantum group which are compatible with the adjoint action of every quantum Levi subgroup (deliver highest and lowest vectors of finite dimensional submodules). We assign for that role certain entries of reduced quantum Lax matrices associated with the fundamental adjoint module of the quantum group. This study is motivated by the theory of Mickelsson algebras.
@article{ZNSL_2024_532_a9,
     author = {N. V. Kryazhevskikh and A. I. Mudrov},
     title = {Root vectors in quantum groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {212--234},
     year = {2024},
     volume = {532},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a9/}
}
TY  - JOUR
AU  - N. V. Kryazhevskikh
AU  - A. I. Mudrov
TI  - Root vectors in quantum groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 212
EP  - 234
VL  - 532
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a9/
LA  - en
ID  - ZNSL_2024_532_a9
ER  - 
%0 Journal Article
%A N. V. Kryazhevskikh
%A A. I. Mudrov
%T Root vectors in quantum groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 212-234
%V 532
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a9/
%G en
%F ZNSL_2024_532_a9
N. V. Kryazhevskikh; A. I. Mudrov. Root vectors in quantum groups. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 212-234. http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a9/

[1] J. Dixmier, Enveloping Algebras, Grad. Stud. in Math., 11, AMS, 1996 | DOI | MR | Zbl

[2] V. Chari, A. Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl

[3] S. M. Khoroshkin, V. N. Tolstoy, “Universal R-matrix for quantized (super) algebras”, Commun. Math. Phys., 141 (1991), 599–617 | DOI | MR | Zbl

[4] A. Mudrov, Vector bundles on quantum conjugacy classes, arXiv: 2201.04568

[5] A. Mudrov, V. Stukopin, Mickelsson algebras and inverse Shapovalov form, arXiv: 2309.05318

[6] E. Frenkel, N. Reshetikhin, Deformations of W-algebras associated to simple Lie algebras, arXiv: q-alg/9708006 | MR

[7] J. Mickelsson, “Step algebras of semisimple Lie algebras”, Rev. Mod. Phys., 4 (1973), 307–318 | MR | Zbl

[8] P. Kekäläinen, “Step algebras of quantum algebras of type $A$, $B$ and $D$”, J. Phys. A: Math. Gen., 29 (1996), 1045–1053 | DOI | MR | Zbl

[9] D. Algethami, A. Mudrov, “Shapovalov elements and Hasse diagrams”, Theor. Math. Phys., 216:3 (2023), 1255–1264 | DOI | MR | Zbl