@article{ZNSL_2024_532_a9,
author = {N. V. Kryazhevskikh and A. I. Mudrov},
title = {Root vectors in quantum groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {212--234},
year = {2024},
volume = {532},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a9/}
}
N. V. Kryazhevskikh; A. I. Mudrov. Root vectors in quantum groups. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 212-234. http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a9/
[1] J. Dixmier, Enveloping Algebras, Grad. Stud. in Math., 11, AMS, 1996 | DOI | MR | Zbl
[2] V. Chari, A. Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[3] S. M. Khoroshkin, V. N. Tolstoy, “Universal R-matrix for quantized (super) algebras”, Commun. Math. Phys., 141 (1991), 599–617 | DOI | MR | Zbl
[4] A. Mudrov, Vector bundles on quantum conjugacy classes, arXiv: 2201.04568
[5] A. Mudrov, V. Stukopin, Mickelsson algebras and inverse Shapovalov form, arXiv: 2309.05318
[6] E. Frenkel, N. Reshetikhin, Deformations of W-algebras associated to simple Lie algebras, arXiv: q-alg/9708006 | MR
[7] J. Mickelsson, “Step algebras of semisimple Lie algebras”, Rev. Mod. Phys., 4 (1973), 307–318 | MR | Zbl
[8] P. Kekäläinen, “Step algebras of quantum algebras of type $A$, $B$ and $D$”, J. Phys. A: Math. Gen., 29 (1996), 1045–1053 | DOI | MR | Zbl
[9] D. Algethami, A. Mudrov, “Shapovalov elements and Hasse diagrams”, Theor. Math. Phys., 216:3 (2023), 1255–1264 | DOI | MR | Zbl