Asymptotics of solutions of the degenerate third Painlev\'e equation in the neighbourhood of the regular singular point: the isomonodromy deformation approach
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 169-211

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains several technical refinements of our previously obtained results on the monodromy parametrisation of small-$\tau$ asymptotics of solutions $u(\tau)$ of the degenerate third Painlevé equation, $$ u^{\prime \prime}(\tau) = \frac{(u^{\prime}(\tau))^{2}}{u(\tau)} - \frac{u^{\prime}(\tau)}{\tau} + \frac{1}{\tau} \left(-8 \varepsilon (u(\tau))^{2} + 2ab \right) + \frac{b^{2}}{u(\tau)}, $$ where $\varepsilon = \pm 1$, $\varepsilon b > 0$, $a \in \mathbb{C},$ and of its associated mole function, $\varphi(\tau)$, which satisfies $\varphi^{\prime}(\tau) = \tfrac{2a}{\tau} + \tfrac{b}{u(\tau)}$. We also describe three families of three-real-parameter solutions $u(\tau)$ which have infinite sequences of zeros converging to the origin of the complex $\tau$-plane. Furthemore, for $a=0$, a numerical visualisation of the formulae connecting the asymptotics as $\tau\to0$ and $\tau\to+\infty$ of solutions $u(\tau)$ and $\varphi(\tau)$ having logarithmic behaviour as $\tau\to0$ is given.
@article{ZNSL_2024_532_a8,
     author = {A. V. Kitaev and A. Vartanian},
     title = {Asymptotics of solutions of the degenerate third {Painlev\'e} equation in the neighbourhood of the regular singular point: the isomonodromy deformation approach},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--211},
     publisher = {mathdoc},
     volume = {532},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a8/}
}
TY  - JOUR
AU  - A. V. Kitaev
AU  - A. Vartanian
TI  - Asymptotics of solutions of the degenerate third Painlev\'e equation in the neighbourhood of the regular singular point: the isomonodromy deformation approach
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 169
EP  - 211
VL  - 532
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a8/
LA  - en
ID  - ZNSL_2024_532_a8
ER  - 
%0 Journal Article
%A A. V. Kitaev
%A A. Vartanian
%T Asymptotics of solutions of the degenerate third Painlev\'e equation in the neighbourhood of the regular singular point: the isomonodromy deformation approach
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 169-211
%V 532
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a8/
%G en
%F ZNSL_2024_532_a8
A. V. Kitaev; A. Vartanian. Asymptotics of solutions of the degenerate third Painlev\'e equation in the neighbourhood of the regular singular point: the isomonodromy deformation approach. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 169-211. http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a8/