Asymptotics of solutions of the degenerate third Painlevé equation in the neighbourhood of the regular singular point: the isomonodromy deformation approach
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 169-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper contains several technical refinements of our previously obtained results on the monodromy parametrisation of small-$\tau$ asymptotics of solutions $u(\tau)$ of the degenerate third Painlevé equation, $$ u^{\prime \prime}(\tau) = \frac{(u^{\prime}(\tau))^{2}}{u(\tau)} - \frac{u^{\prime}(\tau)}{\tau} + \frac{1}{\tau} \left(-8 \varepsilon (u(\tau))^{2} + 2ab \right) + \frac{b^{2}}{u(\tau)}, $$ where $\varepsilon = \pm 1$, $\varepsilon b > 0$, $a \in \mathbb{C},$ and of its associated mole function, $\varphi(\tau)$, which satisfies $\varphi^{\prime}(\tau) = \tfrac{2a}{\tau} + \tfrac{b}{u(\tau)}$. We also describe three families of three-real-parameter solutions $u(\tau)$ which have infinite sequences of zeros converging to the origin of the complex $\tau$-plane. Furthemore, for $a=0$, a numerical visualisation of the formulae connecting the asymptotics as $\tau\to0$ and $\tau\to+\infty$ of solutions $u(\tau)$ and $\varphi(\tau)$ having logarithmic behaviour as $\tau\to0$ is given.
@article{ZNSL_2024_532_a8,
     author = {A. V. Kitaev and A. Vartanian},
     title = {Asymptotics of solutions of the degenerate third {Painlev\'e} equation in the neighbourhood of the regular singular point: the isomonodromy deformation approach},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--211},
     year = {2024},
     volume = {532},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a8/}
}
TY  - JOUR
AU  - A. V. Kitaev
AU  - A. Vartanian
TI  - Asymptotics of solutions of the degenerate third Painlevé equation in the neighbourhood of the regular singular point: the isomonodromy deformation approach
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 169
EP  - 211
VL  - 532
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a8/
LA  - en
ID  - ZNSL_2024_532_a8
ER  - 
%0 Journal Article
%A A. V. Kitaev
%A A. Vartanian
%T Asymptotics of solutions of the degenerate third Painlevé equation in the neighbourhood of the regular singular point: the isomonodromy deformation approach
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 169-211
%V 532
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a8/
%G en
%F ZNSL_2024_532_a8
A. V. Kitaev; A. Vartanian. Asymptotics of solutions of the degenerate third Painlevé equation in the neighbourhood of the regular singular point: the isomonodromy deformation approach. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 169-211. http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a8/

[1] M. Abramowitz, I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed., Dover, New York, 1972 | MR

[2] A. I. Bobenko, U. Eitner, “Painlevé equations in the differential geometry of surfaces”, Lect. Notes Math., 1753, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl

[3] R. J. Buckingham, P. D. Miller, “On the algebraic solutions of the Painlevé-III $(\mathrm{D}_{7})$ equation”, Phys. D, 441 (2022), 133493 | DOI | MR | Zbl

[4] R. J. Buckingham, P. D. Miller, “Differential equations for approximate solutions of Painlevé equations: application to the algebraic solutions of the Painlevé-III $(\mathrm{D}_{7})$ equation”, SIGMA, 20 (2024), 008 | MR | Zbl

[5] F. Contatto, D. Dorigoni, “Instanton solutions from Abelian sinh-Gordon and Tzitzeica vortices”, J. Geom. Phys., 98 (2015), 429–445 | DOI | MR | Zbl

[6] F. Contatto, “Integrable Abelian vortex-like solitons”, Physics Letters B, 768 (2017), 23–29 | DOI | Zbl

[7] M. Dunajski, P. Plansangkate, “Strominger–Yau–Zaslow geometry, affine spheres and Painlevé III”, Comm. Math. Phys., 290 (2009), 997–1024 | DOI | MR | Zbl

[8] M. Dunajski, “Abelian vortices from sinh-Gordon and Tzitzeica equations”, Phys. Lett. B, 710 (2012), 236–239 | DOI | MR

[9] M. Dunajski, N. Gavrea, “Elizabethan vortices”, Nonlinearity, 36 (2023), 4169–4186 | DOI | MR | Zbl

[10] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, v. 1, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953 (based, in part, on notes left by Harry Bateman) | MR

[11] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, v. 2, McGraw-Hill Book Company, Inc., New York–Toronto–London, 1953 (based, in part, on notes left by Harry Bateman) | MR

[12] I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series, and Products, 5th edn., ed. Jeffrey A., Academic Press, Inc., Boston, 1994 | MR

[13] R. Hildebrand, “Self-associated three-dimensional cones”, Beitr. Algebra Geom., 63 (2022), 867–906 | DOI | MR | Zbl

[14] J. Soviet Math., 46:5 (1989), 2077–2083 | DOI | MR | Zbl | Zbl

[15] A. V. Kitaev, “The justification of asymptotic formulas that can be obtained by the method of isomonodromic deformations”, J. Soviet Math., 57:3 (1991), 3131–3135 | DOI | MR

[16] A. V. Kitaev, A. H. Vartanian, “Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation: I”, Inverse Problems, 20 (2004), 1165–1206 | DOI | MR | Zbl

[17] A. V. Kitaev, A. Vartanian, “Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation: II”, Inverse Problems, 26 (2010), 105010 | DOI | MR | Zbl

[18] A. V. Kitaev, “Meromorphic solution of the degenerate third Painlevé equation vanishing at the origin”, SIGMA, 15 (2019), 046 | MR | Zbl

[19] A. V. Kitaev, A. Vartanian, “Asymptotics of integrals of some functions related to the degenerate third Painlevé equation”, J. Math. Sci., 242 (2019), 715–721 | DOI | MR | Zbl

[20] A. V. Kitaev, A. Vartanian, “One-parameter meromorphic solution of the degenerate third Painlevé equation with formal monodromy parameter $a = \pm \mathrm{i}/2$ vanishing at the origin”, Zap. Nauchn. Semin. POMI, 520, 2023, 189–226 | MR

[21] A. V. Kitaev, A. Vartanian, “Algebroid solutions of the degenerate third Painlevé equation for vanishing formal monodromy parameter”, J. Math. Anal. Appl., 532:1 (2024), 127917 | DOI | MR | Zbl

[22] A. V. Kitaev, A. Vartanian, The degenerate third Painlevé equation: complete asymptotic classification of solutions in the neighbourhood of the regular singular point, in preparation

[23] S. Shimomura, Boutroux ansatz for the degenerate third Painlevé transcendents, arXiv: 2207.11495v3

[24] B. I. Suleimanov, “Effect of a small dispersion on self-focusing in a spatially one-dimensional case”, JETP Letters, 106 (2017), 400–405 | DOI