@article{ZNSL_2024_532_a7,
author = {A. V. Ivanov},
title = {Applicability condition of a cutoff in two-dimensional models},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {153--168},
year = {2024},
volume = {532},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a7/}
}
A. V. Ivanov. Applicability condition of a cutoff in two-dimensional models. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 153-168. http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a7/
[1] M. E. Peskin, D. V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley, 1995 | MR
[2] O. I. Zavialov, Renormalized quantum field theory, Kluwer Academic Publishers, Dodrecht–Boston, 1990 | MR | Zbl
[3] J. Math. Sci., 257:4 (2021), 526–536 | DOI | MR | Zbl
[4] A. V. Ivanov, N. V. Kharuk, “Two-loop Cutoff renormalization of 4-D Yang–Mills effective action”, J. Phys. G: Nucl. Part. Phys., 48 (2020), 015002 | DOI
[5] A. V. Ivanov, N. V. Kharuk, “Formula for two-loop divergent part of 4-D Yang–Mills effective action”, Eur. Phys. J. C, 82 (2022), 997 | DOI
[6] A. V. Ivanov, “Explicit Cutoff Regularization in Coordinate Representation”, J. Phys. A: Math. Theor., 55 (2022), 495401 | DOI | MR | Zbl
[7] A. V. Ivanov, N. V. Kharuk, “Three-loop divergences in effective action of 4-dimensional Yang–Mills theory with cutoff regularization: $\Gamma_4^2$-contribution”, Zap. Nauchn. Sem. POMI, 520, 2023, 162–188 | MR
[8] P. V. Akacevich, A. V. Ivanov, “On two-loop effective action of 2D sigma model”, Eur. Phys. J. C, 83 (2023), 653 | DOI
[9] A. V. Ivanov, Three-loop renormalization of the quantum action for a four-dimensional scalar model with quartic interaction with the usage of the background field method and a cutoff regularization, 2024, arXiv: ; 2402.14549https://www.pdmi.ras.ru/preprint/2024/24-02.html | MR
[10] A. V. Ivanov, N. V. Kharuk, Three-loop renormalization of the quantum action for a five-dimensional scalar cubic model with the usage of the background field method and a cutoff regularization, 2024, arXiv: ; 2404.07513https://www.pdmi.ras.ru/preprint/2024/24-05.html | MR
[11] R. Poghossian, “Two dimensional renormalization group flows in next to leading order”, J. High Energ. Phys., 2014 (2014), 167 | DOI
[12] S. Rychkov, L. G. Vitale, “Hamiltonian truncation study of the $\Phi^4$ theory in two dimensions”, Phys. Rev. D, 91 (2015), 085011 | DOI | MR
[13] M. Serone, G. Spada, G. Villadoro, “$\lambda\phi^4$ – Theory I: The symmetric phase beyond NNNNNNNNLO”, J. High Energ. Phys., 2018 (2018), 148 | DOI | MR | Zbl
[14] C. Delcamp, A. Tilloy, “Computing the renormalization group flow of two-dimensional $\phi^4$ theory with tensor networks”, Phys. Rev. Research, 2 (2020), 033278 | DOI
[15] A. V. Ivanov, On a criterion for a cutoff regularization in the coordinate representation, 2024, arXiv: ; 2403.09218https://www.pdmi.ras.ru/preprint/2024/24-04.html | MR
[16] A. M. Polyakov, “Interaction of goldstone particles in two dimensions. Applications to ferromagnets and massive Yang-Mills fields”, Phys. Lett. B, 59:1 (1975), 79–81 | DOI | MR
[17] A. A. Migdal, “Phase transitions in gauge and spin-lattice systems”, Sov. Phys. JETP, 42:4 (1976), 743–746
[18] E. Brezin, J. Zinn-Justin, “Renormalization of the nonlinear $\sigma$ model in $2+\varepsilon$ dimensions – application to the Heisenberg ferromagnets”, Phys. Rev. Lett., 36 (1976), 691–694 | DOI
[19] E. Brezin, J. Zinn-Justin, “Spontaneous breakdown of continuous symmetries near two dimensions”, Phys. Rev. B, 14 (1976), 3110–3120 | DOI
[20] E. Brezin, J. Zinn-Justin, J. C. Le Guillou, “Renormalization of the nonlinear $\sigma$ model in $2+\varepsilon$ dimensions”, Phys. Rev. D, 14:10 (1976), 2615–2621 | DOI
[21] S. Hikami, E. Brezin, “Three-loop calculations in the two-dimensional non-linear $\sigma$ model”, J. Phys. A: Math. Gen., 11 (1978), 1141 | DOI
[22] D. Friedan, “Nonlinear models in $2+\varepsilon$ dimensions”, Ann. Phys., 163 (1985), 318–419 | DOI | MR | Zbl
[23] 303–310. A. M. Polyakov, Gauge Fields and Strings, Taylor and Francis Group, London, 1987 | MR
[24] A. A. Bagaev, “Two-loop calculations of the matrix $\sigma$-model effective action in the background field formalism”, Theor. Math. Phys., 154:2 (2008), 303–310 | DOI | MR | Zbl
[25] M. Lüscher, “Dimensional regularisation in the presence of large background fields”, Annals Physics, 142 (1982), 359–392 | DOI | MR
[26] A. V. Ivanov, N. V. Kharuk, “Special Functions for Heat Kernel Expansion”, Eur. Phys. J. Plus, 137 (2022), 1060 | DOI | MR
[27] I. M. Gel'fand, G. E. Shilov, Generalized Functions, v. 1, AMS Chelsea Publishing, 377, Properties and Operations, AMS, 1964 | MR
[28] E. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, NJ, 1971 | MR | Zbl
[29] B. S. DeWitt, “Quantum theory of gravity. 2. The manifestly covariant theory”, Phys. Rev., 162 (1967), 1195–1239 | DOI | Zbl
[30] B. S. DeWitt, “Quantum theory of gravity. 3. Applications of the covariant theory”, Phys. Rev., 162 (1967), 1239–1256 | DOI | Zbl
[31] G. 't Hooft, “The background field method in gauge field theories”, Proceedings Acta Universitatis Wratislaviensis (Karpacz, 1975), v. 1, Wroclaw, 1976, 345–369
[32] L. F. Abbott, “Introduction to the background field method”, Acta Phys. Polon. B, 13:1–2 (1982), 33–50 | MR
[33] I. Ya. Aref'eva, A. A. Slavnov, L. D. Faddeev, “Generating functional for the S-matrix in gauge-invariant theories”, TMF, 21:3 (1974), 311–321