Local heat kernel
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 136-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to a local heat kernel, which is a special component of the standard heat kernel. Localization means that all considerations are performed in an open convex subset of a smooth Riemannian manifold. We discuss such properties and concepts as uniqueness, a symmetry of the Seeley–DeWitt coefficients, extension to the entire manifold, a family of special functions, and the late-time asymptotic behavior using the path integral approach.
@article{ZNSL_2024_532_a6,
     author = {A. V. Ivanov},
     title = {Local heat kernel},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {136--152},
     year = {2024},
     volume = {532},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a6/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - Local heat kernel
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 136
EP  - 152
VL  - 532
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a6/
LA  - ru
ID  - ZNSL_2024_532_a6
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T Local heat kernel
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 136-152
%V 532
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a6/
%G ru
%F ZNSL_2024_532_a6
A. V. Ivanov. Local heat kernel. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 136-152. http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a6/

[1] B. S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach, New York, 1965 | MR

[2] P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, CRC Press, Boca Raton, 1994 | MR

[3] N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Springer, Berlin, 2004 | MR | Zbl

[4] D. Fursaev, D. Vassilevich, Operators, Geometry and Quanta: Methods of Spectral Geometry in Quantum Field Theory, Springer, Dordrecht, 2011 | MR | Zbl

[5] A. V. Ivanov, D. V. Vassilevich, “Atiyah–Patodi–Singer index theorem for domain walls”, J. Phys. A: Math. Theor., 53 (2020), 305201 | DOI | MR | Zbl

[6] A. V. Ivanov, “Index Theorem for Domain Walls”, J. Phys. A: Math. Theor., 54 (2021), 095203 | DOI | MR | Zbl

[7] I. Jack, H. Osborn, “Two-loop background field calculations for arbitrary background fields”, Nucl. Phys. B, 207 (1982), 474–504 | DOI

[8] J. P. Bornsen, A. E. M. van de Ven, “Three-loop Yang–Mills $\beta$-function via the covariant background field method”, Nucl. Phys. B, 657 (2003), 257–303 | DOI | MR | Zbl

[9] J. Math. Sci., 257:4 (2021), 526–536 | DOI | MR | Zbl

[10] A. V. Ivanov, N. V. Kharuk, “Two-loop cutoff renormalization of 4-D Yang–Mills effective action”, J. Phys. G: Nucl. Part. Phys., 48 (2020), 015002 | DOI

[11] A. V. Ivanov, N. V. Kharuk, “Formula for two-loop divergent part of 4-D Yang–Mills effective action”, Eur. Phys. J. C, 82 (2022), 997 | DOI

[12] P. V. Akacevich, A. V. Ivanov, “On two-loop effective action of 2D sigma model”, Eur. Phys. J. C, 83 (2023), 653 | DOI

[13] A. V. Ivanov, N. V. Kharuk, “Three-loop divergences in effective action of 4-dimensional Yang–Mills theory with cutoff regularization: $\Gamma_4^2$-contribution”, Zap. Nauchn. Sem. POMI, 520, 2023, 162–188 | MR

[14] D. V. Vassilevich, “Heat kernel expansion: user's manual”, Phys. Rept, 388 (2003), 279–360 | DOI | MR | Zbl

[15] Theoret. and Math. Phys., 205:2 (2020), 1456–1472 | DOI | DOI | MR | Zbl

[16] V. A. Fock, “Die Eigenzeit in der Klassischen- und in der Quanten-mechanik”, Sow. Phys., 12 (1937), 404–425 | Zbl

[17] J. Schwinger, “On gauge invariance and vacuum polarization”, Phys. Rev., 82 (1951), 664–679 | DOI | MR | Zbl

[18] A. V. Ivanov, N. V. Kharuk, “Special Functions for Heat Kernel Expansion”, Eur. Phys. J. Plus, 137 (2022), 1060 | DOI | MR

[19] B. O'Neill, Semi-Riemannian Geometry With Applications to Relativity, Academic Press, 1983 | MR | Zbl

[20] G. W. Gibbons, “Quantum field theory in curved spacetime”, General Relativity, An Einstein Centenary Survey, 1979, 639–679 | MR

[21] P. B. Gilkey, “The spectral geometry of a Riemannian manifold”, J. Differ. Geom., 10 (1975), 601–618 | DOI | MR | Zbl

[22] R. T. Seeley, “Complex powers of an elliptic operator”, Singular Integrals, Proc. Sympos. Pure Math., 10, 1967, 288–307 | DOI | MR | Zbl

[23] J. L. Synge, “A characteristic function in Riemannian space and its application to the solution of geodesic triangles”, London Math. Soc., 32 (1931), 241–258 | DOI | MR | Zbl

[24] J. L. Synge, Relativity: The general theory, North-Holland Publishing Company, Amsterdam, 1960 | MR | Zbl

[25] J. H. van Vleck, “The correspondence principle in the statistical interpretation of quantum mechanics”, Proc. Nat. Acad. Sci., 14 (1928), 178–188 | DOI

[26] A. V. Ivanov, N. V. Kharuk, “Ordered exponential and its features in Yang–Mills effective action”, Commun. Theor. Phys., 75 (2023), 085202 | DOI | MR | Zbl

[27] S. A. Fulling, G. Kennedy, “The resolvent parametrix of the general elliptic linear differential operator: a closed form for the intrinsic symbol”, Trans. Amer. Math. Soc., 310 (1988), 583–617 | DOI | MR | Zbl

[28] A. O. Barvinsky, G. A. Vilkovisky, “Beyond the Schwinger–DeWitt technique: converting loops into trees and in-in currents”, Nucl. Phys. B, 282 (1987), 163–188 | DOI | MR

[29] A. O. Barvinsky, G. A. Vilkovisky, “Covariant perturbation theory (II). Second order in the curvature. General algorithms”, Nucl. Phys. B, 333 (1990), 471–511 | DOI | MR

[30] A. O. Barvinsky, G. A. Vilkovisky, “Covariant perturbation theory (III). Spectral representations of the third-order form factors”, Nucl. Phys. B, 333 (1990), 512–524 | DOI | MR

[31] A. O. Barvinsky, Yu. V. Gusev, V. V. Zhytnikov, G. A. Vilkovisky, Covariant Perturbation Theory (IV). Third Order in the Curvature, Report of the University of Manitoba, Winnipeg, 1993, 192 pp. | MR

[32] I. G. Avramidi, “Heat Kernel and Quantum Gravity”, Lecture Notes in Physics Monographs, 64, Springer, New York, 2000, 1–149 | DOI | MR

[33] Theoret. and Math. Phys., 198:1 (2019), 100–117 | DOI | DOI | MR | Zbl

[34] A. V. Ivanov, N. V. Kharuk, “Non-recursive formula for trace of heat kernel”, International Conference on Days on Diffraction, DD 2019, 2019, 74–77 | DOI

[35] V. Moretti, “Proof of the symmetry of the off-diagonal heat-kernel and Hadamard's expansion coefficients in general $C^\infty$ Riemannian manifolds”, Comm. Math. Phys., 208:2 (1999), 283–308 | DOI | MR | Zbl

[36] V. Moretti, “Proof of the symmetry of the off-diagonal Hadamard/Seeley-DeWitt's coefficients in $C^\infty$ Lorentzian manifolds by a local Wick rotation”, Commun. Math. Phys., 212:1 (2000), 165–189 | DOI | MR | Zbl

[37] M. Ludewig, “Strong short-time asymptotics and convolution approximation of the heat kernel”, Ann. Glob. Anal. Geom., 55 (2019), 371–394 | DOI | MR | Zbl

[38] V. Moretti, “On the global Hadamard parametrix in QFT and the signed squared geodesic distance defined in domains larger than convex normal neighbourhoods”, Lett. Math. Phys., 111 (2021), 130 | DOI | MR | Zbl

[39] A. Grigor'yan, “Estimates of heat kernels on Riemannian manifolds”, Cambridge University Press, London Mathematical Society Lecture Note Series, 273 (1999), 140–225 | MR | Zbl

[40] A. O. Barvinsky, V. F. Mukhanov, “New nonlocal effective action”, Phys. Rev. D, 66 (2002), 065007 | DOI | MR

[41] A. O. Barvinsky, Yu. V. Gusev, V. F. Mukhanov, D. V. Nesterov, “Nonperturbative late time asymptotics for the heat kernel in gravity theory”, Phys. Rev. D, 68 (2003), 105003 | DOI | MR

[42] P. J. Daniell, “Integrals in An Infinite Number of Dimensions”, Ann. Math., 20:4 (1919), 281–288 | DOI | MR

[43] P. Cartier, C. DeWitt–Morette, “A Rigorous Mathematical Foundation of Functional Integration”, NATO ASI Series, 361, Springer, Boston, 1997, 1–50 | DOI | MR

[44] F. Bastianelli, P. van Nieuwenhuizen, Path integrals and anomalies in curved space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2006 | MR | Zbl

[45] S. A. Franchino Vinas, P. A. G. Pisani, “Semi-transparent boundary conditions in the worldline formalism”, J. Phys. A: Math. Theor., 44 (2011), 295401 | DOI | MR | Zbl

[46] O. Corradini, C. Schubert, J. P. Edwards, N. Ahmadiniaz, Spinning Particles in Quantum Mechanics and Quantum Field Theory, 2021, arXiv: 1512.08694v2 | MR

[47] J. Math. Sci, 257:4 (2021), 518–525 | DOI | MR | Zbl