Correlation functions of two $3$-dimensional transverse potentials with power singularities
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 109-118
Voir la notice de l'article provenant de la source Math-Net.Ru
We study convolutions of two localized transverse potentials with $-5/2$-power singularities with the Green function of the Laplace operator in the $3$-dimensional space. These potentials correspond to the electromagnetic field with $-1/2$-power singularities which resides at a minimum distance to the domain of the quadratic form of the Laplacian, but does not belong to the latter. The discussed correlation functions can be used as the Nevanlinna functions for the closable extensions of quadratic form of the Laplace operator for the electromagnetic field with $-1/2$-power singularities, and in this way they are important for studying of perturbed Hamiltonians.
@article{ZNSL_2024_532_a4,
author = {T. A. Bolokhov},
title = {Correlation functions of two $3$-dimensional transverse potentials with power singularities},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {109--118},
publisher = {mathdoc},
volume = {532},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a4/}
}
TY - JOUR AU - T. A. Bolokhov TI - Correlation functions of two $3$-dimensional transverse potentials with power singularities JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 109 EP - 118 VL - 532 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a4/ LA - en ID - ZNSL_2024_532_a4 ER -
T. A. Bolokhov. Correlation functions of two $3$-dimensional transverse potentials with power singularities. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 109-118. http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a4/