@article{ZNSL_2024_532_a4,
author = {T. A. Bolokhov},
title = {Correlation functions of two $3$-dimensional transverse potentials with power singularities},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {109--118},
year = {2024},
volume = {532},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a4/}
}
T. A. Bolokhov. Correlation functions of two $3$-dimensional transverse potentials with power singularities. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 109-118. http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a4/
[1] A. Alonso, B. Simon, “The Birman–Krein–Vishik theory of selfadjoint extensions of semibounded operators”, J. Operator Theory, 4 (1980), 251–270 | MR | Zbl
[2] V. Koshmanenko, “Quadratic Forms and Linear Operators”, Singular Quadratic Forms in Perturbation Theory, Chap. 2, Springer, Dordrecht, 1999 | DOI | MR
[3] Dokl. Akad. Nauk Ser. Fiz., 137 (1961), 1011 | MR | Zbl
[4] A. Kiselev, B. Simon, “Rank one perturbations with infinitesimal coupling”, J. Funct. Anal., 130 (1995), 345–356 | DOI | MR | Zbl
[5] S. Albeverio, P. Kurasov, Singular Perturbation of Differential Operators. Solvable Schrödinger type Operators, Cambridge University Press, 2000 | MR
[6] T. A. Bolokhov, Some solutions to the eigenstate equation of free scalar quantum field theory in the Schrödinger representation, arXiv: 2403.03049
[7] F. Gesztesy, E. Tsekanovskii, On matrix-valued Herglotz functions, arXiv: funct-an/9712004
[8] L. D. Faddeev, “Notes on divergences and dimensional transmutation in Yang–Mills theory”, Theor. Math. Phys., 148 (2006), 986–994 | DOI | MR | Zbl
[9] I. S. Gradsteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, 7 ed, Academic Press, 2007 | MR