@article{ZNSL_2024_532_a3,
author = {N. M. Bogoliubov and C. L. Malyshev},
title = {Semi-infinite {Heisenberg} {XX0} chain and random walks},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {91--108},
year = {2024},
volume = {532},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a3/}
}
N. M. Bogoliubov; C. L. Malyshev. Semi-infinite Heisenberg XX0 chain and random walks. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 91-108. http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a3/
[1] E. Lieb, T. Schultz, D. Mattis, “Two soluble models of an antiferromagnetic chain”, Ann. Physics, 16 (1961), 407–466 | DOI | MR | Zbl
[2] F. Colomo, A. G. Izergin, V. E. Korepin, V. Tognetti, “Correlators in the Heisenberg XX0 chain as Fredholm determinants”, Phys. Lett. A, 169 (1992), 243–247 | DOI | MR
[3] D. Pérez-García, M. Tierz, “Mapping between the Heisenberg XX spin chain and low-energy QCD”, Phys. Rev. X, 4 (2014), 021050
[4] M. Saeedian, A. Zahabi, “Phase structure of XX0 spin chain and nonintersecting Brownian motion”, J. Stat. Mech. Theory Exp., 2018 (2018), 013104 | DOI | MR | Zbl
[5] M. Saeedian, A. Zahabi, “Exact solvability and asymptotic aspects of generalized XX0 spin chains”, Phys. A, 549 (2020), 124406 | DOI | MR | Zbl
[6] L. Santilli, M. Tierz, “Phase transition in complex-time Loschmidt echo of short and long range spin chain”, J. Stat. Mech. Theory Exp., 2020 (2020), 063102 | DOI | MR | Zbl
[7] N. M. Bogoliubov, “XX0 Heisenberg chain and random walks”, J. Math. Sci., 138 (2006), 5636–5643 | DOI | MR
[8] N. M. Bogoliubov, C. Malyshev, “Correlation functions of the $XX$ Heisenberg magnet and random walks of vicious walkers”, Theor. Math. Phys., 159 (2009), 563–574 | DOI | MR | Zbl
[9] N. M. Bogoliubov, A. G. Pronko, J. Timonen, “Multiple-grain dissipative sandpiles”, J. Math. Sci., 190 (2013), 411–418 | DOI | MR | Zbl
[10] N. M. Bogoliubov, C. Malyshev, “Correlation functions of $XX0$ Heisenberg chain, $q$-binomial determinants, and random walks”, Nucl. Phys. B, 879 (2014), 268–291 | DOI | MR | Zbl
[11] N. M. Bogoliubov, C. Malyshev, “The integrable models and combinatorics”, Russ. Math. Surveys, 70 (2015), 789–856 | DOI | MR | Zbl
[12] N. Bogoliubov, C. Malyshev, “How to Draw a Correlation Function”, SIGMA, 17 (2021), 106 | MR | Zbl
[13] N. M. Bogoliubov, C. L. Malyshev, “Heisenberg XX0 Chain and Random Walks on a Ring”, J Math Sci., 264 (2022), 232–243 | DOI | MR | Zbl
[14] C. Malyshev, N. Bogoliubov, “Spin correlation functions, Ramus-like identities, and enumeration of constrained lattice walks and plane partitions”, J. Phys. A: Math. Theor., 55 (2022), 225002 | DOI | MR | Zbl
[15] C. Malyshev, “Condition of quasi-periodicity in imaginary time as a constraint at functional integration and the time-dependent ZZ-correlator of the XX Heisenberg magnet”, J. Math. Sci., 136 (2006), 3607–3624 | DOI | MR
[16] M. E. Fisher, “Walks, walls, wetting and melting”, J. Stat. Phys., 34 (1984), 667–729 | DOI | MR
[17] R. Gopakumar, D. Gross, “Mastering the master field”, Nucl. Phys. B, 451 (1995), 379–415 | DOI | MR | Zbl
[18] N. M. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model”, J. Phys. A, 38 (2005), 9415–9430 | DOI | MR | Zbl
[19] V. Fock, “Konfigurationsraum und zwiete Quantelung”, Zs. f. Phys., 75 (1932), 622–647 | DOI | Zbl
[20] R. C. King, “Weight multiplicities for the classical groups”, Group Theoretical Methods in Physics, Springer, Berlin–Heidelberg, 1976 | MR
[21] C. Krattenthaler, A. J. Guttmann, X. G. Viennot, “Vicious walkers, friendly walkers and Young tableaux: II With a wall”, J. Phys. A: Math. Gen., 33 (2000), 8835–8866 | DOI | MR | Zbl
[22] R. A. Proctor, “New symmetric plane partitions identities from invariant theory work of De Concini and Procesi”, Europ. J. Combin., 11 (1990), 289–300 | DOI | MR | Zbl
[23] M. Fulmek, Ch. Krattenthaler, “Lattice path proofs for determinantal formulas for symplectic and orthogonal characters”, J. Combin. Theory, Ser. A, 77 (1997), 3–50 | DOI | MR | Zbl
[24] M. L. Mehta, Random Matrices, Academic, New York, 1991 | MR | Zbl
[25] I. G. Mcdonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1995 | MR
[26] R. Stanley, Enumerative Combinatorics, v. 2, Cambridge University Press, Cambridge, 1999 | MR