Quantum L-operator of the critical Ising model
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 257-272 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the two-dimensional Ising model on the square lattice at the critical temperature. This model can be related to the free-fermion eight-vertex model with the trigonometric dependence of the Boltzmann weights on the spectral variable. We obtain the quantum L-operator as a solution of the RLL-relation assuming the spectral variable dependence similar to that of the R-matrix.
@article{ZNSL_2024_532_a11,
     author = {A. G. Pronko and S. K. Syrygina},
     title = {Quantum {L-operator} of the critical {Ising} model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {257--272},
     year = {2024},
     volume = {532},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a11/}
}
TY  - JOUR
AU  - A. G. Pronko
AU  - S. K. Syrygina
TI  - Quantum L-operator of the critical Ising model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 257
EP  - 272
VL  - 532
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a11/
LA  - en
ID  - ZNSL_2024_532_a11
ER  - 
%0 Journal Article
%A A. G. Pronko
%A S. K. Syrygina
%T Quantum L-operator of the critical Ising model
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 257-272
%V 532
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a11/
%G en
%F ZNSL_2024_532_a11
A. G. Pronko; S. K. Syrygina. Quantum L-operator of the critical Ising model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 257-272. http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a11/

[1] L. Onsager, “Crystal statistics. I. A two-dimensional model with an order-disorder transition”, Phys. Rev., 65 (1944), 117–149 | DOI | MR | Zbl

[2] B. M. McCoy, T. T. Wu, The Two-dimensional Ising Model, Harvard University Press, Cambridge, MA, 1973 | MR

[3] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, New York, 1982 | MR | Zbl

[4] G. Mussardo, Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics, 2nd ed., Oxford University Press, 2020 | MR | Zbl

[5] M. T. Batchelor, A. Foerster, “Yang-Baxter integrable models in experiments: from condensed matter to ultracold atoms”, J. Phys. A: Math. Theor., 49 (2016), 173001 | DOI | MR | Zbl

[6] S. Bravyi, L. Caha, R. Movassagh, D. Nagaj, P. Shor, “Criticality without frustration for quantum spin-1 chains”, Phys. Rev. Lett., 109 (2012), 207202 | DOI

[7] R. Movassagh, P. W. Shor, “Supercritical entanglement in local systems: Counterexample to the area law for quantum matter”, Proc. Natl. Acad. Sci., 113 (2016), 13278–13282 | DOI | MR | Zbl

[8] K. Hao, O. Salberger, V. Korepin, “Exact solution of the quantum integrable model associated with the Motzkin spin chain”, J. High Energ. Phys., 2023 (2023), 9 | DOI | MR

[9] R. S. Vieira, “Solving and classifying the solutions of the Yang-Baxter equation through a differential approach. Two-state systems”, J. High Energ. Phys., 2018 (2018), 110 | DOI | MR | Zbl

[10] L. Corcoran, M. de Leeuw, “All regular $4 \times 4$ solutions of the Yang-Baxter equation”, SciPost Phys. Core, 7 (2024), 045 | DOI

[11] S. A. Khachatryan, “New series of multi-parametric solutions to GYBE: Quantum gates and integrability”, Nucl. Phys. B, 996 (2023), 116375 | DOI | MR | Zbl

[12] P. Padmanabhan, K. Hao, V. Korepin, Yang-Baxter solutions from commuting operators, arXiv: 2401.05662

[13] A. S. Garkun, S. K. Barik, A. K. Fedorov, V. Gritsev, New spectral-parameter dependent solutions of the Yang–Baxter equation, arXiv: 2401.12710

[14] P. Padmanabhan, V. Korepin, “Solving the Yang–Baxter, tetrahedron and higher simplex equations using Clifford algebras”, Nucl. Phys. B, 1007 (2024), 116664 | DOI | MR | Zbl

[15] L. A. Takhtadjan, L. D. Faddeev, “The quantum method of the inverse problem and the Heisenberg XYZ model”, Russ. Math. Surveys, 34 (1979), 11–68 | DOI | MR

[16] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Quantum inverse problem method I”, Theor. Math. Phys., 40 (1979), 688–706 | DOI | MR

[17] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[18] L. D. Faddeev, “How algebraic Bethe ansatz works for integrable model”, Les Houches School of Physics: Astrophysical Sources of Gravitational Radiation, 1996, 149–219, arXiv: hep-th/9605187 | MR

[19] R. Cuerno, C. Gomez, E. Lopez, G. Sierra, “The hidden quantum group of the eight-vertex free fermion model: $q$-Clifford algebras”, Phys. Lett. B, 307 (1993), 56–60 | DOI | MR

[20] S. V. Pokrovsky, Yu. A. Bashilov, “Star-triangle relations in the exactly solvable statistical models”, Commun. Math. Phys., 84 (1982), 103–132 | DOI | MR

[21] Ch. Fan, F. Y. Wu, “General lattice model of phase transitions”, Phys. Rev. B, 2 (1970), 723–733 | DOI

[22] S. Krinsky, “Equivalence of the free fermion model to the ground state of the linear $XY$ model”, Phys. Lett. A, 39 (1972), 169–170 | DOI

[23] V. V. Bazhanov, Y. G. Stroganov, “Hidden symmetry of free fermion model. I. Triangle equations and symmetric parametrization”, Theor. Math. Phys., 62 (1985), 253–260 | DOI | MR

[24] Sh. Khachatryan, A. Sedrakyan, “Characteristics of two-dimensional lattice models from a fermionic realization: Ising and $XYZ$ models”, Phys. Rev. B, 80 (2009), 125128 | DOI

[25] D. Cimasoni, H. Duminil-Copin, “The critical temperature for the Ising model on planar doubly periodic graphs”, Electron. J. Probab., 18:44 (2013), 1–18 | MR

[26] I. N. Burenev, A. G. Pronko, “Quantum Hamiltonians generated by the R-matrix of the five-vertex model”, J. Math. Sci., 264 (2022), 271–285 | DOI | MR | Zbl

[27] V. V. Bazhanov, S. M. Sergeev, “An Ising-type formulation of the six-vertex model”, Nucl. Phys. B, 986 (2023), 116055 | DOI | MR | Zbl