@article{ZNSL_2024_532_a10,
author = {E. A. Movchan},
title = {Gelfand{\textendash}Tsetlin basis for irreducible representations of the infinite-dimensional general linear group},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {235--256},
year = {2024},
volume = {532},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a10/}
}
TY - JOUR AU - E. A. Movchan TI - Gelfand–Tsetlin basis for irreducible representations of the infinite-dimensional general linear group JO - Zapiski Nauchnykh Seminarov POMI PY - 2024 SP - 235 EP - 256 VL - 532 UR - http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a10/ LA - ru ID - ZNSL_2024_532_a10 ER -
E. A. Movchan. Gelfand–Tsetlin basis for irreducible representations of the infinite-dimensional general linear group. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 235-256. http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a10/
[1] P. V. Antonenko, “The Gelfand–Tsetlin basis for infinite-dimensional representations of $gl_n (\mathbb{C})$”, J. Physics A: Mathematical and Theoretical, 55:22 (2022), 225201 | DOI | MR | Zbl
[2] W. Fulton, Young tableaux: with applications to representation theory and geometry, Cambridge University Press, 1997 | MR | Zbl
[3] I. M. Gel'fand, M. L. Tsetlin, “Finite-dimensional representations of groups of orthogonal matrices”, Dokl. Akad. Nauk SSSR, n. Ser., 71 (1950), 1017–1020 | MR | Zbl
[4] I. M. Gel'fand, M. I. Graev, “Finite-dimensional irreducible representations of the unitary and complete linear group and special functions associated with them”, Izv. RAN, Ser. Matem., 29:6 (1965), 1329–1356 | MR | Zbl
[5] I. M. Gelfand, M. L. Tsetlin, “Finite-dimensional representations of the group of unimodular matrices”, Dokl. Akad. Nauk SSSR, 71:5 (1950), 825–828 | MR | Zbl
[6] V. G. Kac, A. K. Raina, N. Rozhkovskaya, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, Advanced Series in Mathematical Physics, 29, World scientific, 2013 | DOI | MR | Zbl
[7] S. Mac Lane, Categories for the Working Mathematician, v. 5, Springer Science Business Media, 2013 | MR
[8] A. Molev, Yangians and Classical Lie Algebras, American Mathematical Soc., 2007 | MR | Zbl
[9] A. Molev, O. Yakimova, “Monomial bases and branching rules”, Transformation groups, 26:3 (2021), 995–1024 | DOI | MR | Zbl
[10] A. I. Molev, “Gelfand–Tsetlin bases for classical Lie algebras”, Handbook of algebra, v. 4, 2006, 109–170 | DOI | MR | Zbl
[11] J. G. Nagel, M. Moshinsky, “Operators that lower or raise the irreducible vector spaces of $U_{n-1}$ contained in an irreducible vector space of $U_n$”, J. Math. Phys., 6:5 (1965), 682–694 | DOI | MR | Zbl
[12] M. Nazarov, V. Tarasov, Representations of Yangians with Gelfand–Zetlin bases, Walter de Gruyter GmbH Co. KG, Berlin, Germany, 1998 | MR
[13] M. Nazarov, V. Tarasov, “Yangians and Gelfand-Zetlin bases”, Publications of the Research Institute for Mathematical Sciences, 30:3 (1994), 459–478 | DOI | MR | Zbl
[14] P. A. Valinevich, “Construction of the Gelfand–Tsetlin Basis for Unitary Principal Series Representations of the Algebra $sl_n(\mathbb{C})$”, Theor. Math. Phys., 198:1 (2019), 145–155 | DOI | MR | Zbl
[15] D. P. Zhelobenko, “The classical groups. Spectral analysis of their finite-dimensional representations”, Russian Math. Surveys, 17:1 (1962), 1 | DOI | MR | Zbl