Gelfand–Tsetlin basis for irreducible representations of the infinite-dimensional general linear group
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 235-256 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of constructing a Gelfand–Tsetlin basis in irreducible representations of the infinite-dimensional general linear group. For finite-dimensional irreducible representations of a general linear group, all elements of the Gelfand–Tsetlin basis are parameterized by Gelfand–Tsetlin schemes. We extend this definition to infinite Gelfand–Tsetlin schemes, which, in turn, parameterize elements of the Gelfand–Tsetlin basis of an irreducible representation of the infinite-dimensional complete linear group. Using properties of co-limits of representations with the highest weight, we present an explicit form of the Gelfand–Tsetlin basis.
@article{ZNSL_2024_532_a10,
     author = {E. A. Movchan},
     title = {Gelfand{\textendash}Tsetlin basis for irreducible representations of the infinite-dimensional general linear group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {235--256},
     year = {2024},
     volume = {532},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a10/}
}
TY  - JOUR
AU  - E. A. Movchan
TI  - Gelfand–Tsetlin basis for irreducible representations of the infinite-dimensional general linear group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 235
EP  - 256
VL  - 532
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a10/
LA  - ru
ID  - ZNSL_2024_532_a10
ER  - 
%0 Journal Article
%A E. A. Movchan
%T Gelfand–Tsetlin basis for irreducible representations of the infinite-dimensional general linear group
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 235-256
%V 532
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a10/
%G ru
%F ZNSL_2024_532_a10
E. A. Movchan. Gelfand–Tsetlin basis for irreducible representations of the infinite-dimensional general linear group. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 235-256. http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a10/

[1] P. V. Antonenko, “The Gelfand–Tsetlin basis for infinite-dimensional representations of $gl_n (\mathbb{C})$”, J. Physics A: Mathematical and Theoretical, 55:22 (2022), 225201 | DOI | MR | Zbl

[2] W. Fulton, Young tableaux: with applications to representation theory and geometry, Cambridge University Press, 1997 | MR | Zbl

[3] I. M. Gel'fand, M. L. Tsetlin, “Finite-dimensional representations of groups of orthogonal matrices”, Dokl. Akad. Nauk SSSR, n. Ser., 71 (1950), 1017–1020 | MR | Zbl

[4] I. M. Gel'fand, M. I. Graev, “Finite-dimensional irreducible representations of the unitary and complete linear group and special functions associated with them”, Izv. RAN, Ser. Matem., 29:6 (1965), 1329–1356 | MR | Zbl

[5] I. M. Gelfand, M. L. Tsetlin, “Finite-dimensional representations of the group of unimodular matrices”, Dokl. Akad. Nauk SSSR, 71:5 (1950), 825–828 | MR | Zbl

[6] V. G. Kac, A. K. Raina, N. Rozhkovskaya, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, Advanced Series in Mathematical Physics, 29, World scientific, 2013 | DOI | MR | Zbl

[7] S. Mac Lane, Categories for the Working Mathematician, v. 5, Springer Science Business Media, 2013 | MR

[8] A. Molev, Yangians and Classical Lie Algebras, American Mathematical Soc., 2007 | MR | Zbl

[9] A. Molev, O. Yakimova, “Monomial bases and branching rules”, Transformation groups, 26:3 (2021), 995–1024 | DOI | MR | Zbl

[10] A. I. Molev, “Gelfand–Tsetlin bases for classical Lie algebras”, Handbook of algebra, v. 4, 2006, 109–170 | DOI | MR | Zbl

[11] J. G. Nagel, M. Moshinsky, “Operators that lower or raise the irreducible vector spaces of $U_{n-1}$ contained in an irreducible vector space of $U_n$”, J. Math. Phys., 6:5 (1965), 682–694 | DOI | MR | Zbl

[12] M. Nazarov, V. Tarasov, Representations of Yangians with Gelfand–Zetlin bases, Walter de Gruyter GmbH Co. KG, Berlin, Germany, 1998 | MR

[13] M. Nazarov, V. Tarasov, “Yangians and Gelfand-Zetlin bases”, Publications of the Research Institute for Mathematical Sciences, 30:3 (1994), 459–478 | DOI | MR | Zbl

[14] P. A. Valinevich, “Construction of the Gelfand–Tsetlin Basis for Unitary Principal Series Representations of the Algebra $sl_n(\mathbb{C})$”, Theor. Math. Phys., 198:1 (2019), 145–155 | DOI | MR | Zbl

[15] D. P. Zhelobenko, “The classical groups. Spectral analysis of their finite-dimensional representations”, Russian Math. Surveys, 17:1 (1962), 1 | DOI | MR | Zbl