Gelfand--Tsetlin basis for irreducible representations of the infinite-dimensional general linear group
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 235-256

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of constructing a Gelfand–Tsetlin basis in irreducible representations of the infinite-dimensional general linear group. For finite-dimensional irreducible representations of a general linear group, all elements of the Gelfand–Tsetlin basis are parameterized by Gelfand–Tsetlin schemes. We extend this definition to infinite Gelfand–Tsetlin schemes, which, in turn, parameterize elements of the Gelfand–Tsetlin basis of an irreducible representation of the infinite-dimensional complete linear group. Using properties of co-limits of representations with the highest weight, we present an explicit form of the Gelfand–Tsetlin basis.
@article{ZNSL_2024_532_a10,
     author = {E. A. Movchan},
     title = {Gelfand--Tsetlin basis for irreducible representations of the infinite-dimensional general linear group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {235--256},
     publisher = {mathdoc},
     volume = {532},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a10/}
}
TY  - JOUR
AU  - E. A. Movchan
TI  - Gelfand--Tsetlin basis for irreducible representations of the infinite-dimensional general linear group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 235
EP  - 256
VL  - 532
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a10/
LA  - ru
ID  - ZNSL_2024_532_a10
ER  - 
%0 Journal Article
%A E. A. Movchan
%T Gelfand--Tsetlin basis for irreducible representations of the infinite-dimensional general linear group
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 235-256
%V 532
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a10/
%G ru
%F ZNSL_2024_532_a10
E. A. Movchan. Gelfand--Tsetlin basis for irreducible representations of the infinite-dimensional general linear group. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 235-256. http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a10/