Reflection operator and hypergeometry I: $SL(2,\mathbb{R})$ spin chain
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 5-46

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we consider open $SL(2,\mathbb{R})$ spin chain, mainly the simplest case of one particle. Eigenfunctions of the model can be constructed using the so-called reflection operator. We obtain several representations of this operator and show its relation to the hypergeometric function. Besides, we prove orthogonality and completeness of one-particle eigenfunctions and connect them to the index hypergeometric transform. Finally, we briefly state the formula for the eigenfunctions in many-particle case.
@article{ZNSL_2024_532_a0,
     author = {P. V. Antonenko and N. M. Belousov and S. \`E. Derkachov and S. M. Khoroshkin},
     title = {Reflection operator and hypergeometry {I:} $SL(2,\mathbb{R})$ spin chain},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--46},
     publisher = {mathdoc},
     volume = {532},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a0/}
}
TY  - JOUR
AU  - P. V. Antonenko
AU  - N. M. Belousov
AU  - S. È. Derkachov
AU  - S. M. Khoroshkin
TI  - Reflection operator and hypergeometry I: $SL(2,\mathbb{R})$ spin chain
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 5
EP  - 46
VL  - 532
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a0/
LA  - en
ID  - ZNSL_2024_532_a0
ER  - 
%0 Journal Article
%A P. V. Antonenko
%A N. M. Belousov
%A S. È. Derkachov
%A S. M. Khoroshkin
%T Reflection operator and hypergeometry I: $SL(2,\mathbb{R})$ spin chain
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 5-46
%V 532
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a0/
%G en
%F ZNSL_2024_532_a0
P. V. Antonenko; N. M. Belousov; S. È. Derkachov; S. M. Khoroshkin. Reflection operator and hypergeometry I: $SL(2,\mathbb{R})$ spin chain. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 30, Tome 532 (2024), pp. 5-46. http://geodesic.mathdoc.fr/item/ZNSL_2024_532_a0/