Voir la notice du chapitre de livre
@article{ZNSL_2024_531_a9,
author = {V. A. Petrov and G. S. Shulga},
title = {Pukhlikov{\textendash}Khovansky theorem for oriented cohomology theories},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {152--156},
year = {2024},
volume = {531},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a9/}
}
V. A. Petrov; G. S. Shulga. Pukhlikov–Khovansky theorem for oriented cohomology theories. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 152-156. http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a9/
[1] A. V. Pukhlikov, A. G. Khovanskii, “Konechno-additivnye mery virtualnykh mnogogrannikov”, Algebra i Analiz, 4:2 (1992), 161–185
[2] B. Calmés, V. Petrov, K. Zainoulline, “Invariants, torsion indices and oriented cohomology of complete flags”, Ann. Scie. l'École Normale Supérieure, 46 (2013), 405–448 | DOI | MR | Zbl
[3] A. Fröhlich, Formal groups, Lect. Notes Math., 74, 1968 | DOI | MR | Zbl
[4] M. Levine, F. Morel, Algebraic Cobordism, Spring. Monographs Mathematics, 2007 | MR
[5] L. Monin, E. Smirnov, “Polyhedral models for K-theory of toric and flag varieties”, Séminaire Lotharingien de Combinatoire, 89B (2023) | MR
[6] A. Nenashev, K. Zainoulline, “Oriented cohomology and motivic decompositions of relative cellular spaces”, J. Pure Appl. Algebra, 205 (2006), 323–340 | DOI | MR | Zbl
[7] I. Panin, A. Smirnov, “Riemann–Roch theorems for oriented cohomology”, Axiomatic, Enriched and Motivic Homotopy Theory, 2004, 261–333 | DOI | MR | Zbl