Classification of convergence sets of multidimensional complete fields
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 117-126
Voir la notice de l'article provenant de la source Math-Net.Ru
Convergence sets of a multidimensional complete field (that is, such that all power series above them converge when substituting an element of the maximal ideal instead of a variable) are classified by inclusion in some standard convergence ring. In addition, an algorithm for constructing this ring is given.
@article{ZNSL_2024_531_a6,
author = {A. I. Madunts},
title = {Classification of convergence sets of multidimensional complete fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {117--126},
publisher = {mathdoc},
volume = {531},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a6/}
}
A. I. Madunts. Classification of convergence sets of multidimensional complete fields. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 117-126. http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a6/