Classification of convergence sets of multidimensional complete fields
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 117-126

Voir la notice de l'article provenant de la source Math-Net.Ru

Convergence sets of a multidimensional complete field (that is, such that all power series above them converge when substituting an element of the maximal ideal instead of a variable) are classified by inclusion in some standard convergence ring. In addition, an algorithm for constructing this ring is given.
@article{ZNSL_2024_531_a6,
     author = {A. I. Madunts},
     title = {Classification of convergence sets of multidimensional complete fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {117--126},
     publisher = {mathdoc},
     volume = {531},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a6/}
}
TY  - JOUR
AU  - A. I. Madunts
TI  - Classification of convergence sets of multidimensional complete fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 117
EP  - 126
VL  - 531
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a6/
LA  - ru
ID  - ZNSL_2024_531_a6
ER  - 
%0 Journal Article
%A A. I. Madunts
%T Classification of convergence sets of multidimensional complete fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 117-126
%V 531
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a6/
%G ru
%F ZNSL_2024_531_a6
A. I. Madunts. Classification of convergence sets of multidimensional complete fields. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 117-126. http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a6/