Classification of convergence sets of multidimensional complete fields
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 117-126
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Convergence sets of a multidimensional complete field (that is, such that all power series above them converge when substituting an element of the maximal ideal instead of a variable) are classified by inclusion in some standard convergence ring. In addition, an algorithm for constructing this ring is given.
@article{ZNSL_2024_531_a6,
     author = {A. I. Madunts},
     title = {Classification of convergence sets of multidimensional complete fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {117--126},
     year = {2024},
     volume = {531},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a6/}
}
TY  - JOUR
AU  - A. I. Madunts
TI  - Classification of convergence sets of multidimensional complete fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 117
EP  - 126
VL  - 531
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a6/
LA  - ru
ID  - ZNSL_2024_531_a6
ER  - 
%0 Journal Article
%A A. I. Madunts
%T Classification of convergence sets of multidimensional complete fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 117-126
%V 531
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a6/
%G ru
%F ZNSL_2024_531_a6
A. I. Madunts. Classification of convergence sets of multidimensional complete fields. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 117-126. http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a6/

[1] K. Kato, “A generalization of local class field theory by using K-groups. 1”, J. Fac. Sci. Univ. Tokyo, Sect. 1A, 27 (1979), 303–376 | MR

[2] K. Kato, “A generalization of local class field theory by using K-groups. 2”, J. Fac. Sci. Univ. Tokyo, Sect. 1A, 27 (1980), 603–683 | MR | Zbl

[3] K. Kato, “The existence theorem for higher local class field theory”, Publ. IHES, 43 (1980), 1–37

[4] I. B. Zhukov, “Strukturnaya teorema dlya polnykh polei”, Trudy Sankt-Peterb. mat. obsch., 3 (1994), 215–234

[5] I. B. Zhukov, A. I. Madunts, “Mnogomernye polnye polya: topologiya i drugie osnovnye ponyatiya”, Trudy Sankt-Peterb. mat. obsch., 3 (1994), 4–46

[6] I. B. Zhukov, A. I. Madunts, “Additivnye i multiplikativnye razlozheniya v mnogomernykh lokalnykh polyakh”, Zap. nauchn. sem. POMI, 272, 2000, 186–196 | Zbl

[7] A. I. Madunts, “Koltsa, porozhdennye mnozhestvami skhodimosti mnogomernogo polnogo polya”, Zap. nauchn. sem. POMI, 500, 2021, 149–157

[8] A. I. Madunts, “Mnozhestva skhodimosti mnogomernogo polnogo polya”, Zap. nauchn. sem. POMI, 492, 2020, 125–133

[9] A. I. Madunts, “Postroenie kolets skhodimosti mnogomernogo polnogo polya”, Zap. nauchn. sem. POMI, 513, 2022, 139–146 | MR

[10] A. I. Madunts, Skhodimost posledovatelnostei i ryadov v mnogomernykh polnykh polyakh, Avtoreferat dissertatsii na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk, Sankt-Peterburg, 1995, 14 pp.

[11] A. I. Madunts, S. V. Vostokov, R. P. Vostokova, “Formalnye gruppy nad podkoltsami koltsa tselykh mnogomernogo lokalnogo polya”, Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya, 6:1 (2019), 88–97 | MR | Zbl

[12] A. N. Parshin, “Abelevy nakrytiya arifmeticheskikh skhem”, Doklad AN SSSR. Ser. mat., 243 (1978), 855–858 | Zbl

[13] A. N. Parshin, “K arifmetike dvumernykh skhem. 1. Raspredeleniya i vychety”, Izv. AN SSSR. Ser. mat., 40 (1976), 736–773 | Zbl

[14] A. N. Parshin, “Lokalnaya teoriya polei klassov”, Trudy MIAN, 165, 1984, 143–170 | Zbl