The cancellation property of torsion-free abelian groups of finite rank
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 41-52
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A final solution to Fuchs's problem 70 on the cancellation property is given. First, Eichler's theorem is modified for the case of totally definite quaternion algebras. Then this result is applied to show that one of the conditions in the author's earlier criterion can be omitted.
@article{ZNSL_2024_531_a2,
     author = {A. V. Blazhenov},
     title = {The cancellation property of torsion-free abelian groups of finite rank},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {41--52},
     year = {2024},
     volume = {531},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a2/}
}
TY  - JOUR
AU  - A. V. Blazhenov
TI  - The cancellation property of torsion-free abelian groups of finite rank
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 41
EP  - 52
VL  - 531
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a2/
LA  - ru
ID  - ZNSL_2024_531_a2
ER  - 
%0 Journal Article
%A A. V. Blazhenov
%T The cancellation property of torsion-free abelian groups of finite rank
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 41-52
%V 531
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a2/
%G ru
%F ZNSL_2024_531_a2
A. V. Blazhenov. The cancellation property of torsion-free abelian groups of finite rank. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 41-52. http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a2/

[1] A. V. Blazhenov, “Rody i sokraschenie modulei konechnogo ranga bez krucheniya”, Algebra i analiz, 7:6 (1995), 33–78 | MR | Zbl

[2] A. V. Blazhenov, “Ispravleniya k state “Rody i sokraschenie modulei konechnogo ranga bez krucheniya””, Algebra i analiz, 11:4 (1999), 222–224 | MR

[3] A. V. Blazhenov, “O samosokraschenii abelevykh grupp konechnogo ranga bez krucheniya”, Zap. nauchn. semin. POMI, 265, 1999, 7–10

[4] E. Gekke, Lektsii po teorii algebraicheskikh chisel, Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, M., 1940

[5] L. Fuks, Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977

[6] D. M. Arnold, “Genera and direct sum decompositions of torsion free modules”, Abelian Group Theory, Lecture Notes in Math., 616, Springer-Verlag, Berlin–New York, 1977, 197–218 | DOI | MR

[7] D. M. Arnold, Finite rank torsion free abelian groups and rings, Lecture Notes Math., 931, Springer-Verlag, Berlin–New York, 1982 | DOI | MR | Zbl

[8] R. A. Beaumont, R. S. Pierce, “Subrings of algebraic number fields”, Acta Sci. Math. Szeged, 22 (1961), 202–216 | MR | Zbl

[9] M. Eichler, “Bestimmung der Idealklassenzahl in gewissen normalen einfachen Algebren”, J. reine angew. Math., 176 (1937), 192–202 | DOI | MR | Zbl

[10] M. Eichler, “Über die Idealklassenzahl hyperkomplexen Zahlen”, Math. Z., 43 (1938), 481–494 | DOI | MR | Zbl

[11] M. Eichler, “Allgemeine Kongruenzklasseneinteilungen der Ideale einfacher Algebren über algebraischen Zahlkörpern und ihre L-Reihen”, J. reine angew. Math., 179 (1938), 227–251 | DOI | MR | Zbl

[12] L. Fuchs, F. Loonstra, “On the cancellation of modules in direct sums over Dedekind domains”, Indaq. Math., 33 (1971), 163–169 | DOI | MR

[13] H. Jacobinski, “Genera and decompositions of lattices over orders”, Acta Math., 121 (1968), 1–29 | DOI | MR | Zbl

[14] K. Roggenkamp, Lattices over orders, v. II, Lect. Notes Math., 142, 1970 | MR | Zbl

[15] J. Stelzer, “A cancellation criterion for finite-rank torsion-free abelian groups”, Proc. Amer. Math. Soc., 94 (1985), 363–368 | DOI | MR | Zbl

[16] J. Stelzer, “Ring theoretical criteria for cancellation”, Abelian group theory (Oberwolfach, 1985), Gordon and Breach, New York, 1987, 175–196 | MR

[17] R. G. Swan, “Projective modules over group rings and maximal orders”, Ann. Math., 76 (1962), 55–61 | DOI | MR | Zbl

[18] R. B. Warfield, “Cancellation of modules and groups and stable range of endomorphism rings”, Pac. J. Math., 91 (1980), 457–485 | DOI | MR | Zbl