Voir la notice du chapitre de livre
@article{ZNSL_2024_531_a2,
author = {A. V. Blazhenov},
title = {The cancellation property of torsion-free abelian groups of finite rank},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {41--52},
year = {2024},
volume = {531},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a2/}
}
A. V. Blazhenov. The cancellation property of torsion-free abelian groups of finite rank. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 41-52. http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a2/
[1] A. V. Blazhenov, “Rody i sokraschenie modulei konechnogo ranga bez krucheniya”, Algebra i analiz, 7:6 (1995), 33–78 | MR | Zbl
[2] A. V. Blazhenov, “Ispravleniya k state “Rody i sokraschenie modulei konechnogo ranga bez krucheniya””, Algebra i analiz, 11:4 (1999), 222–224 | MR
[3] A. V. Blazhenov, “O samosokraschenii abelevykh grupp konechnogo ranga bez krucheniya”, Zap. nauchn. semin. POMI, 265, 1999, 7–10
[4] E. Gekke, Lektsii po teorii algebraicheskikh chisel, Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoi literatury, M., 1940
[5] L. Fuks, Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977
[6] D. M. Arnold, “Genera and direct sum decompositions of torsion free modules”, Abelian Group Theory, Lecture Notes in Math., 616, Springer-Verlag, Berlin–New York, 1977, 197–218 | DOI | MR
[7] D. M. Arnold, Finite rank torsion free abelian groups and rings, Lecture Notes Math., 931, Springer-Verlag, Berlin–New York, 1982 | DOI | MR | Zbl
[8] R. A. Beaumont, R. S. Pierce, “Subrings of algebraic number fields”, Acta Sci. Math. Szeged, 22 (1961), 202–216 | MR | Zbl
[9] M. Eichler, “Bestimmung der Idealklassenzahl in gewissen normalen einfachen Algebren”, J. reine angew. Math., 176 (1937), 192–202 | DOI | MR | Zbl
[10] M. Eichler, “Über die Idealklassenzahl hyperkomplexen Zahlen”, Math. Z., 43 (1938), 481–494 | DOI | MR | Zbl
[11] M. Eichler, “Allgemeine Kongruenzklasseneinteilungen der Ideale einfacher Algebren über algebraischen Zahlkörpern und ihre L-Reihen”, J. reine angew. Math., 179 (1938), 227–251 | DOI | MR | Zbl
[12] L. Fuchs, F. Loonstra, “On the cancellation of modules in direct sums over Dedekind domains”, Indaq. Math., 33 (1971), 163–169 | DOI | MR
[13] H. Jacobinski, “Genera and decompositions of lattices over orders”, Acta Math., 121 (1968), 1–29 | DOI | MR | Zbl
[14] K. Roggenkamp, Lattices over orders, v. II, Lect. Notes Math., 142, 1970 | MR | Zbl
[15] J. Stelzer, “A cancellation criterion for finite-rank torsion-free abelian groups”, Proc. Amer. Math. Soc., 94 (1985), 363–368 | DOI | MR | Zbl
[16] J. Stelzer, “Ring theoretical criteria for cancellation”, Abelian group theory (Oberwolfach, 1985), Gordon and Breach, New York, 1987, 175–196 | MR
[17] R. G. Swan, “Projective modules over group rings and maximal orders”, Ann. Math., 76 (1962), 55–61 | DOI | MR | Zbl
[18] R. B. Warfield, “Cancellation of modules and groups and stable range of endomorphism rings”, Pac. J. Math., 91 (1980), 457–485 | DOI | MR | Zbl