Weighted Leavitt path algebras – an overview
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 157-237
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Weighted Leavitt path algebras were introduced in 2013 by Roozbeh Hazrat. These algebras generalise simultaneously the usual Leavitt path algebras and William Leavitt's algebras $L(m,n)$. In this paper we try to give an overview of what is known about the weighted Leavitt path algebras. We also prove some new results (in particular on the graded $\mathrm{K}$-theory of weighted Leavitt path algebras) and mention open problems.
@article{ZNSL_2024_531_a10,
     author = {R. Preusser},
     title = {Weighted {Leavitt} path algebras {\textendash} an overview},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--237},
     year = {2024},
     volume = {531},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a10/}
}
TY  - JOUR
AU  - R. Preusser
TI  - Weighted Leavitt path algebras – an overview
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 157
EP  - 237
VL  - 531
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a10/
LA  - en
ID  - ZNSL_2024_531_a10
ER  - 
%0 Journal Article
%A R. Preusser
%T Weighted Leavitt path algebras – an overview
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 157-237
%V 531
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a10/
%G en
%F ZNSL_2024_531_a10
R. Preusser. Weighted Leavitt path algebras – an overview. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 157-237. http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a10/

[1] G. Abrams, G. Aranda Pino, “The Leavitt path algebra of a graph”, J. Algebra, 293:2 (2005), 319–334 | DOI | MR | Zbl

[2] G. Abrams, P. Ara, M. Siles Molina, Leavitt path algebras, Lect. Notes Math., 2191, Springer, 2017 | DOI | MR | Zbl

[3] A. Alahmadi, H. Alsulami, S. Jain, E. Zelmanov, “Leavitt path algebras of finite Gelfand-Kirillov dimension”, J. Algebra Appl., 11:6 (2012), 1250225 | DOI | MR | Zbl

[4] P. Ara, M. Brustenga, “$K_1$ of corner skew Laurent polynomial rings and applications”, Comm. Algebra, 33:7 (2005), 2231–2252 | DOI | MR | Zbl

[5] P. Ara, M.A. González-Barroso, K.R. Goodearl, E. Pardo, “Fractional skew monoid rings”, J. Algebra, 278:1 (2004), 104–126 | DOI | MR | Zbl

[6] P. Ara, K. Goodearl, “Leavitt path algebras of separated graphs”, J. reine angew. Math., 669 (2012), 165–224 | MR | Zbl

[7] P. Ara, M.A. Moreno, E. Pardo, “Nonstable $K$-theory for graph algebras”, Algebr. Represent. Theory, 10:2 (2007), 157–178 | DOI | MR | Zbl

[8] P. Ara, R. Hazrat, H. Li, A. Sims, “Graded Steinberg algebras and their representations”, Algebra Number Theory, 12:1 (2018), 131–172 | DOI | MR | Zbl

[9] G. Aranda Pino, J. Clark, A. an Huef, I. Raeburn, “Kumjian-Pask algebras of higher-rank graphs”, Trans. Amer. Math. Soc., 365:7 (2013), 3613–3641 | DOI | MR | Zbl

[10] G.M. Bergman, “Coproducts and some universal ring constructions”, Trans. Amer. Math. Soc., 200 (1974), 33–88 | DOI | MR | Zbl

[11] G.M. Bergman, The diamond lemma for ring theory

[12] X.W. Chen, “Irreducible representations of Leavitt path algebras”, Forum Math., 27 (2015), 549–574 | DOI | MR | Zbl

[13] R. Hazrat, “The graded structure of Leavitt path algebras”, Israel J. Math., 195:2 (2013), 833–895 | DOI | MR | Zbl

[14] R. Hazrat, Graded rings and graded Grothendieck groups, Math. Society Lecture Note Series, Cambridge University Press, London, 2016 | MR | Zbl

[15] R. Hazrat, R. Preusser, “Applications of normal forms for weighted Leavitt path algebras: simple rings and domains”, Algebr. Represent. Theor., 20 (2017), 1061–1083 | DOI | MR | Zbl

[16] R. Hazrat, R. Preusser, A. Shchegolev, Irreducible representations of Leavitt algebras, arXiv: 2103.11700 [math.RT]

[17] G. Higman, “The units of group-rings”, Proc. London Math. Soc., 46 (1940), 231–248 | DOI | MR | Zbl

[18] I. Kaplansky, Fields and rings, Chicago Lectures in Mathematics, Second edition, The University of Chicago Press, 1972 | MR

[19] W.G. Leavitt, “Modules over rings of words”, Proc. Amer. Math. Soc., 7 (1956), 188–193 | DOI | MR | Zbl

[20] W.G. Leavitt, “Modules without invariant basis number”, Proc. Amer. Math. Soc., 8 (1957), 322–328 | DOI | MR | Zbl

[21] W.G. Leavitt, “The module type of a ring”, Trans. Amer. Math. Soc., 103 (1962), 113–130 | DOI | MR | Zbl

[22] W.G. Leavitt, “The module type of homomorphic images”, Duke Math. J., 32 (1965), 305–311 | DOI | MR | Zbl

[23] R. Mohan, B.N. Suhas, “Cohn-Leavitt path algebras of bi-separated graphs”, Comm. Algebra, 49:5 (2021), 1991–2021 | DOI | MR | Zbl

[24] J.M. Moreno-Fernandez, M.S. Molina, “Graph algebras and the Gelfand–Kirillov dimension”, J. Algebra Its Appl., 17:5 (2018), 1850095 | DOI | MR | Zbl

[25] R. Preusser, “The V-monoid of a weighted Leavitt path algebra”, Israel J. Math., 234:1 (2019), 125–147 | DOI | MR | Zbl

[26] R. Preusser, “The Gelfand-Kirillov dimension of a weighted Leavitt path algebra”, J. Algebra Appl., 19 (2020), 2050059, 25 pp. | DOI | MR | Zbl

[27] R. Preusser, Locally finite weighted Leavitt path algebras, arXiv: 1806.06139 [math.RA]

[28] R. Preusser, “Leavitt path algebras of hypergraphs”, Bull. Braz. Math. Soc. (N.S.), 51 (2020), 185–221 | DOI | MR | Zbl

[29] R. Preusser, “Weighted Leavitt path algebras that are isomorphic to unweighted Leavitt path algebras”, Algebr. Represent. Theor., 24 (2021), 403–423 | DOI | MR | Zbl