Nikolai Aleksandrovich Vavilov
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 7-40
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{ZNSL_2024_531_a1,
     author = {E. B. Plotkin and A. I. Generalov and N. S. Geldhauser and N. L. Gordeev and A. Yu. Luzgarev and V. V. Nesterov and I. A. Panin and V. A. Petrov and S. Yu. Pilyugin and A. V. Stepanov and A. K. Stavrova and V. G. Khalin},
     title = {Nikolai {Aleksandrovich} {Vavilov}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--40},
     year = {2024},
     volume = {531},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a1/}
}
TY  - JOUR
AU  - E. B. Plotkin
AU  - A. I. Generalov
AU  - N. S. Geldhauser
AU  - N. L. Gordeev
AU  - A. Yu. Luzgarev
AU  - V. V. Nesterov
AU  - I. A. Panin
AU  - V. A. Petrov
AU  - S. Yu. Pilyugin
AU  - A. V. Stepanov
AU  - A. K. Stavrova
AU  - V. G. Khalin
TI  - Nikolai Aleksandrovich Vavilov
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2024
SP  - 7
EP  - 40
VL  - 531
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a1/
LA  - ru
ID  - ZNSL_2024_531_a1
ER  - 
%0 Journal Article
%A E. B. Plotkin
%A A. I. Generalov
%A N. S. Geldhauser
%A N. L. Gordeev
%A A. Yu. Luzgarev
%A V. V. Nesterov
%A I. A. Panin
%A V. A. Petrov
%A S. Yu. Pilyugin
%A A. V. Stepanov
%A A. K. Stavrova
%A V. G. Khalin
%T Nikolai Aleksandrovich Vavilov
%J Zapiski Nauchnykh Seminarov POMI
%D 2024
%P 7-40
%V 531
%U http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a1/
%G ru
%F ZNSL_2024_531_a1
E. B. Plotkin; A. I. Generalov; N. S. Geldhauser; N. L. Gordeev; A. Yu. Luzgarev; V. V. Nesterov; I. A. Panin; V. A. Petrov; S. Yu. Pilyugin; A. V. Stepanov; A. K. Stavrova; V. G. Khalin. Nikolai Aleksandrovich Vavilov. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 40, Tome 531 (2024), pp. 7-40. http://geodesic.mathdoc.fr/item/ZNSL_2024_531_a1/

[1] A. Ananievskii, N. Vavilov, S. Sinchuk, “Overgroups of $E(l, R) \otimes E(m, R)$”, J. Math. Sci., 161:4 (2009), 461–473 | DOI | MR

[2] M. Aschbacher M., “On the maximal subgroups of the finite classical groups”, Invent. Math., 76:3 (1984), 469–514 | DOI | MR | Zbl

[3] A. Bak, R. Hazrat, N.A. Vavilov, “Localization-completion strikes again: relative K1 is nilpotent by abelian”, J. Pure Appl. Algebra, 213 (2009), 1075–1085 | DOI | MR | Zbl

[4] A. Bak, V. Petrov, Guoping Tang, “Stability for quadratic $K_1$”, K-Theory, 30:1 (2003), 1–11 | DOI | MR | Zbl

[5] A. Bak, N.A. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloquium, 7:2 (2000), 159–196 | DOI | MR | Zbl

[6] H. Bass, J. Milnor, J-P. Serre, “Solution of the congruence subgroup problem for $SL_n$ $(n \geq 3)$ and $Sp_{2n}$ $(n \geq 2)$”, Publ. Math. IHES, 33 (1967), 59–137 | DOI | MR | Zbl

[7] Z. I. Borewicz, “A description of the subgroups of the general linear group containing the group of diagonal matrices”, J. Sov. Math., 17:2 (1981), 1718–1730 | DOI | Zbl

[8] Z. I. Borewicz, W. Narkiewicz, N. A. Vavilov, “On subgroups of the general linear group over a Dedekind ring”, J. Sov. Math., 19:1 (1982), 982–987 | DOI | MR | Zbl

[9] Z. I. Borewicz, N. A. Vavilov, “Subgroups of the general linear group over a semilocal ring containing the group of diagonal matrices”, Proc. Steklov Inst. Math., 1980, no. 4, 41–54 | MR | Zbl

[10] Z. I. Borewicz, N. A. Vavilov, “On the subgroups of the general linear group over a commutative ring”, Soviet Math. Dokl., 26:3 (1982), 679–681 | MR | Zbl

[11] Z. I. Borewicz, N. A. Vavilov, “The distribution of subgroups in the general linear group over a commutative ring”, Proc. Steklov. Inst. Math., 165:3 (1985), 27–46 | MR | Zbl

[12] L. Di Martino, N.A. Vavilov, “(2; 3)-generation of $SL(n; q)$. I. Cases n = 5; 6; 7”, Commun. Algebra, 1994, 1321–1347 | DOI | MR | Zbl

[13] E. V. Dybkova, N. A. Vavilov, “Subgroups of the general symplectic group, containing the group of diagonal matrices”, J. Sov. Math., 24 (1984), 406–416 | DOI | MR | Zbl

[14] E. V. Dybkova, N. A. Vavilov, “Subgroups of the general symplectic group containing the group of diagonal matrices”, Zap. Nauchn. Semin. LOMI, 103, 1980, 31–47 ; 155–156 | MR | Zbl

[15] E. V. Dybkova, N. A. Vavilov, “Subgroups of the general symplectic group containing the group of diagonal matrices, II”, Zap. Nauchn. Semin. LOMI, 132, 1983, 44–56 | MR

[16] M. Gavrilovich, S. I. Nikolenko, N. A. Vavilov, “Structure of Chevalley groups: the proof from the Book”, J. Math. Sci., 140:5 (2007), 626–645 | DOI | MR

[17] M. Gavrilovich, N. A. Vavilov, “An $A_2$-proof of the structure theorems for Chevalley groups of types $E_6$ and $E_7$”, St. Petersburg Math. J., 16:4 (2005), 649–672 | DOI | MR | Zbl

[18] P. Gvozdevsky, Overgroups of subsysten subgroups, Ph.D. thesis, SPbU, 2023

[19] P. Gvozdevsky, “Overgroups of subsystem subgroups in exceptional groups: nonideal levels”, St. Petersburg Math. J., 33:6 (2022), 897–925 | DOI | MR | Zbl

[20] A. L. Harebov, N. A. Vavilov, “On the lattice of subgroups of Chevalley group containing a split maximal torus”, Commun. Algebra, 34:1 (1996), 103–133 | MR

[21] R. Hazrat, A. Stepanov, N. A. Vavilov, Z. Zhang, “The yoga of commutators”, J. Math. Sci., 179 (2011), 662–678 | DOI | MR | Zbl

[22] R. Hazrat, A. Stepanov, N. A. Vavilov, Z. Zhang, “The yoga of commutators:further applications”, J. Math. Sci., 200:6 (2014), 742–768 | DOI | MR | Zbl

[23] R. Hazrat, A. Stepanov, N. A. Vavilov, Z. Zhang, “Commutator width in Chevalley groups”, Note di Mat., 33:1 (2013), 139–170 | MR | Zbl

[24] R. Hazrat, N. A. Vavilov, “Bak's work on K-theory of rings”, J. Pure Appl. Algebra, 213 (2009), 1075–1085 | DOI | MR | Zbl

[25] R. Hazrat, N. A. Vavilov, “$K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[26] V. I. Kopeiko, “The stabilization of symplectic groups over a polynomial ring”, Math. U.S.S.R., Sbornik, 34 (1978), 655–669 | DOI | MR | Zbl

[27] B. Kunyavskii, A. Lavrenov, E. Plotkin, N. Vavilov, Bounded generation of Steinberg groups over Dedekind rings of arithmetic type, 2023, 23 pp., arXiv: 2307.05526v2 [math.KT]

[28] B. Kunyavskii , E. Plotkin, N. Vavilov, “Bounded generation and commutator width of Chevalley groups: function case”, European J. Math., 9 (2023), 53 | DOI | MR | Zbl

[29] B. Kunyavskii, E. Plotkin, N.Vavilov, Uniform bounded elementary generation of Chevalley groups, 2023, 30 pp., arXiv: 2307.15756 [math.GR]

[30] A. Lavrenov, S. Sinchuk, “On centrality of even orthogonal $K_2$”, J. Pure Appl. Alg., 221:5 (2017), 1134–1145 | DOI | MR | Zbl

[31] A. Lavrenov, S. Sinchuk, E. Voronetsky, “Centrality of $K_2$ for Chevalley groups: a pro-group approach”, Isr. J. Math., 2024 | MR

[32] R. Lubkov, Overgroups of the elementary subgroups of reductive groups in irreducible representations, Ph.D. thesis, SPbU, 2022 | MR

[33] R. Lubkov, A. Stepanov, “Subgroups of Chevalley groups over rings”, J. Math. Sci., 252 (2021), 829–840 | DOI | MR | Zbl

[34] A. Luzgarev, Overgroups of exceptional groups, PhD thesis, SPbU, Saint-Petersburg, 2008

[35] A. Luzgarev, “On overgroups of $E(E_6, R)$ and $E(E_7, R)$ in their minimal representations”, J. Math. Sci., 134:6 (2004), 2558–2571 | DOI | MR | Zbl

[36] A. Luzgarev, “Overgroups of $F_4$ in $E_6$ over commutative rings”, St.Petersburg Math. J., 20 (2009), 955–981 | DOI | MR | Zbl

[37] A. Luzgarev, A. Stavrova, “Elementary subgroup of an isotropic reductive group is perfect”, St. Petersburg Math. J., 23:5 (2012), 881–890 | DOI | MR | Zbl

[38] A. Luzgarev, N. A. Vavilov, “Calculations in Exceptional Groups, an Update”, J. Math. Sci., 209 (2015), 922–934 | DOI | MR | Zbl

[39] V. V. Nesterov, N. A. Vavilov, “Geometry of microweight tori”, Vladikavkaz J. Math., 10:1 (2008), 10–23 | MR | Zbl

[40] V. V. Nesterov, N. A. Vavilov, “Pairs of microweight tori in $GL_n$”, Chebyshevskii Sbornik, 21:4 (2020), 152–161 | DOI | MR | Zbl

[41] I. Panin, A. Stavrova, N. Vavilov, “On Grothendieck– Serre's conjecture concerning principal-bundles over reductive group schemes”, Compositio Mathematica, 151:3 (2015), 535–567 | DOI | MR | Zbl

[42] V. A. Petrov, “Odd unitary groups”, J. Math. Sci., 130:3 (2005), 475–4766 | MR

[43] V. Petrov. A. Stavrova, “Elementary subgroups in isotropic reductive groups”, St.Petersburg Math. J., 20:4 (2009), 625–644 | DOI | MR | Zbl

[44] V. A. Petrov, N. A. Vavilov, “Overgroups of $Ep(2l;R)$”, St. Petersburg Math. J., 15:4 (2004), 515–543 | DOI | MR | Zbl

[45] V. A. Petrov, N. A. Vavilov, “Overgroups of $EO(n, R)$”, St. Petersburg Math. J., 19:2 (2008), 167–195 | DOI | MR | Zbl

[46] E. Plotkin, A.Semenov, N. A. Vavilov, “Visual basic representations: an atlas”, Int. J. Algebra Comp., 8:1 (1998), 61–95 | DOI | MR | Zbl

[47] E. Plotkin, A. Stepanov, N.A. Vavilov, “Calculations in Chevalley groups over commutative rings”, Soviet. Math. Dokl., 40:1 (1989), 145–147 | MR | Zbl

[48] G. Seitz, The maximal subgroups of classical algebraic groups, Mem. Amer. Math. Soc., 67, no. 365, 1987 | MR

[49] A. Stavrova, Stroenije isotropnyh reduktivnyh grupp, PhD Thesis, St. Petersburg State University, 2009 | Zbl

[50] A. Stavrova, “Homotopy invariance of non-stable $K_1$-functors”, J. K-Theory, 13:2 (2014), 199–248 | DOI | MR | Zbl

[51] A. Stavrova, A. Stepanov, “Normal structure of isotropic reductive groups over rings”, J. Algebra, 2022 | MR

[52] A. V. Shchegolev, Overgroups of elementary block-diagonal subgroups in even unitary groups over quasi-finite rings, Ph.D. thesis, Universität Bielefeld, 2015

[53] A. V. Shchegolev, “Overgroups of an elementary block-diagonal subgroup of the classical symplectic group over an arbitrary commutative ring”, St. Petersburg Math. J., 30:6 (2019), 1007–1041 | DOI | MR | Zbl

[54] S Sinchuk, “On centrality of $K_2$ for Chevalley groups of type $E_l$”, J. Pure Appl. Alg., 220:2 (2016), 857–875 | DOI | MR | Zbl

[55] A. S. Sivatski, A. V. Stepanov, “On the word length of commutators in $GL_n(R)$”, K-Theory, 17:4 (1999), 295–302 | DOI | MR | Zbl

[56] A. Smolensky, B. Sury, N. A. Vavilov, “Gauss decomposition for Chevalley groups, revisited”, Intern. J. Group Theory, 1:1 (2012), 3–16 | MR | Zbl

[57] M. Stein, “Stability theorems for $K1$, $K2$ and related functors modeled on Chevalley groups”, Japan. J. Math., 4 (1978), 77–108 | DOI | MR | Zbl

[58] A. Stepanov, “Free product subgroups between Chevalley groups $G(\Phi, F)$ and $G(\Phi, F[t])$”, J. Algebra, 324:7 (2010), 1549–1557 | DOI | MR | Zbl

[59] A. Stepanov, “Subring subgroups in Chevalley groups with doubly laced root systems”, J. Algebra, 362 (2012), 12–29 | DOI | MR | Zbl

[60] A. Stepanov, N. A. Vavilov, “Decomposition of transvections: a theme with variations”, $K$-theory, 19 (2000), 109–153 | DOI | MR | Zbl

[61] A. Stepanov, N. A. Vavilov, “On the length of commutators in Chevalley groups”, Israel Math. J., 185:1 (2011), 253–276 | DOI | MR | Zbl

[62] A. Stepanov, N. A. Vavilov, “Standard commutator formulae”, Vest. St. Petersburg Univ., Ser. 1, 2008, no. 1, 9–14 | MR | Zbl

[63] Math. USSR-Izv., 11:2 (1977), 22–238 | DOI | MR | Zbl

[64] G. Taddei, “Normalité des groupes eléméntaire dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55, no. 2, 1986, 693–710 | DOI | MR | Zbl

[65] N. A. Vavilov, “Parabolic subgroups of Chevalley groups over a semi-local ring”, J. Sov. Math., 37 (1987), 942–952 | DOI | Zbl

[66] N. A. Vavilov, “On subgroups of split orthogonal groups over a ring”, Siberian Math. J., 29:4 (1988), 537–547 | DOI | MR | Zbl

[67] N. A. Vavilov, “Subgroups of split orthogonal groups”, Siberian Math. J., 29:3 (1988), 341–352 | DOI | MR | Zbl

[68] N. A. Vavilov, “The group $SL_n$ over a Dedekind ring of arithmetic type”, Vestn. Leningrad. Univ. Mat. Mekh. Astronom., 1983, 5–10 | MR | Zbl

[69] N. A. Vavilov, “Subgroups of the general linear group over a ring that satisfies stability conditions”, Izv. Vysh. Uchebnykh Zavedeniĭ. Matematika, 10, 19–25 | MR

[70] N. A. Vavilov, “Subgroups of splittable classical groups”, Transl. Proc. Steklov Inst. Math., 1991, no. 4, 27–41 | MR

[71] N. A. Vavilov, “On subgroups of the spinor group that contain a splittable maximal torus. II”, J. Math. Sci., 124:1 (2004), 4698–4707 | DOI | MR

[72] N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-associative algebras and related topics (Hiroshima, 1990), World Scientific, Singapore et al, 1991, 219–335 | MR | Zbl

[73] N. A. Vavilov, “Subgroups of Chevalley groups containing a maximal torus”, Transl. Amer. Math. Soc., 155 (1993), 59–100 | MR | Zbl

[74] N. A. Vavilov, “A third look at weight diagrams”, Rendiconti del Seminario Matematico dell Universita di Padova, 104 (2000), 201–250 | MR | Zbl

[75] N. A. Vavilov, “Do it yourself structure constants for Lie algebras of type $E_l$”, J. Math. Sci., 120:4 (2004), 1513–1548 | DOI | MR

[76] N. A. Vavilov, “An $A_3$-proof of the structure theorems for Chevalley groups of types $E_6$ and $E_7$”, Int. J. Algebra Comput., 17:5–6 (2007), 1283–1298 | DOI | MR | Zbl

[77] N. A. Vavilov, “Decomposition of unipotents for $E_6$ and $E_7$: 25 years after”, J. Math. Sci., 219:3 (2016), 355–369 | DOI | MR | Zbl

[78] N. A. Vavilov, “Numerology of quadratic equations”, St. Petersburg Math. J., 20:5 (2009), 687–707 | DOI | MR | Zbl

[79] N.A. Vavilov, “Some more exceptional numerology”, J. Math. Sci., 171:3 (2010), 317–321 | DOI | MR | Zbl

[80] N. A. Vavilov, “Geometry of 1-tori in $GL_n$”, St. Petersburg Math. J., 19:3 (2008), 407–429 | DOI | MR | Zbl

[81] N. A. Vavilov, “Weight elements of Chevalley groups”, St. Petersburg Math. J., 20:1 (2009), 23–57 | DOI | MR | Zbl

[82] N. A. Vavilov, “The structure of isotropic reductive groups”, Tr. Inst. Mat., 18:1 (2010), 15–27 | Zbl

[83] N. A. Vavilov, “Reshaping the metaphor of proof”, Philos. Trans. Roy. Soc. A, 377:2140 (2019), 20180279, 18 pp. | DOI | MR | Zbl

[84] N. A. Vavilov, “Kompyuter kak novaya realnost matematiki. I. Personal account”, Kompyuternye instrumenty v obrazovanii, 2020, no. 2, 5–26

[85] N. A. Vavilov, “Kompyuter kak novaya realnost matematiki. II. Problema Varinga”, Kompyuternye instrumenty v obrazovanii, 2020, no. 3, 5–55

[86] N. A. Vavilov, “Kompyuter kak novaya realnost matematiki. III. Chisla Mersenna i summy delitelei”, Kompyuternye instrumenty v obrazovanii, 2020, no. 4, 5–58

[87] N. A. Vavilov, “Kompyuter kak novaya realnost matematiki. IV. Problema Goldbakha”, Kompyuternye instrumenty v obrazovanii, 2021, no. 4, 5–71

[88] N. A. Vavilov, “Kompyuter kak novaya realnost matematiki. V. Legkaya problema Varinga”, Kompyuternye instrumenty v obrazovanii, 2022, no. 3, 5–63

[89] N. A. Vavilov, “Kompyuter kak novaya realnost matematiki. VI. Chisla Ferma i ikh rodstvenniki”, Kompyuternye instrumenty v obrazovanii, 2022, no. 4, 5–67

[90] N. A. Vavilov, “Sankt-Peterburgskaya shkola teorii lineinykh grupp. I. Predystoriya”, Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya, 10 (68):3 (2023), 381–405 | Zbl

[91] N. A. Vavilov, “Sankt-Peterburgskaya shkola teorii lineinykh grupp. II. Rannie raboty Suslina”, Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mekhanika. Astronomiya, 11 (69):1 (2024), 48–83 | Zbl

[92] N. A. Vavilov, V. G. Khalin, A. V. Yurkov, “The Skies Are Falling: Mathematics for Non-Mathematicians”, Dokl. Math., 107, Suppl 1 (2023), S137–S150 | DOI | MR

[93] N. A. Vavilov, V. G. Khalin, A. V. Yurkov, Mathematica dlya nematematika, uchebnoe posobie dlya vuzov, Elektronnoe izdanie, MTsNMO, M., 2021, 483 pp. https://www.mccme.ru/free-books/mathematica.pdf

[94] N. A. Vavilov, N. P. Kharchev, “Orbits of subsystem stabilisers”, Zap. Nauch. Semin. POMI, 338, 2006, 98–124 | MR | Zbl

[95] N. Vavilov, A. Luzgarev, A. Stepanov, “Calculations in exceptional groups over rings”, J. Math. Sci., 168:3 (2010), 334–348 | DOI | MR | Zbl

[96] N. A. Vavilov, M. Yu. Mitrofanov, “The intersection of two Bruhat cells”, Dokl. Ros. Akad. Nauk, 377:1 (2001), 7–10 | MR | Zbl

[97] N. A. Vavilov, I. M. Pevzner, “Triples of long root subgroups”, J. Math. Sci., 147:5 (2007), 7005–7020 | DOI | MR

[98] N. Vavilov, E. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45:1 (2006), 73–113 | DOI | MR

[99] N. A. Vavilov, A. A. Semenov, “Long root semisimple elements in Chevalley groups”, Dokl. Akad. Nauk, 338:6 (1994), 725–727 | MR | Zbl

[100] N. A. Vavilov, A. A. Semenov, “Bruhat decomposition for long root tori in Chevalley groups”, J. Math. Sci., 57 (1991), 3453–3458 | DOI | MR

[101] N. A. Vavilov, A. A. Semenov, “Long root tori in Chevalley groups”, St. Petersburg Math. J., 24:3 (2013), 387–430 | DOI | MR | Zbl

[102] N. A. Vavilov, S. S. Sinchuk, “Dennis-Vaserstein type decompositions”, J. Math. Sci., 171:3 (2010), 331–337 | DOI | MR | Zbl

[103] N. A. Vavilov, Z. Zuhong, “Commutators of elementary subgroups:curioser and curioser”, Transformation Groups, 28 (2023), 487–504 | DOI | MR | Zbl

[104] E. Voronetsky, “Injective stability for odd unitary $K_1$”, J. Group Theory, 23:5 (2020), 781–800 | DOI | MR | Zbl

[105] E. Voronetsky, “Centrality of $K_2$-functors revisited”, J. Pure Appl. Alg., 225:4 (2020) | DOI | MR