Voir la notice du chapitre de livre
@article{ZNSL_2023_530_a10,
author = {M. Shirokikh and I. Shenbin and A. Alekseev and A. Volodkevich and A. Vasilev and S. I. Nikolenko},
title = {User response modeling in recommender systems: a survey},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {141--190},
year = {2023},
volume = {530},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_530_a10/}
}
TY - JOUR AU - M. Shirokikh AU - I. Shenbin AU - A. Alekseev AU - A. Volodkevich AU - A. Vasilev AU - S. I. Nikolenko TI - User response modeling in recommender systems: a survey JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 141 EP - 190 VL - 530 UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_530_a10/ LA - en ID - ZNSL_2023_530_a10 ER -
%0 Journal Article %A M. Shirokikh %A I. Shenbin %A A. Alekseev %A A. Volodkevich %A A. Vasilev %A S. I. Nikolenko %T User response modeling in recommender systems: a survey %J Zapiski Nauchnykh Seminarov POMI %D 2023 %P 141-190 %V 530 %U http://geodesic.mathdoc.fr/item/ZNSL_2023_530_a10/ %G en %F ZNSL_2023_530_a10
M. Shirokikh; I. Shenbin; A. Alekseev; A. Volodkevich; A. Vasilev; S. I. Nikolenko. User response modeling in recommender systems: a survey. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part II–2, Tome 530 (2023), pp. 141-190. http://geodesic.mathdoc.fr/item/ZNSL_2023_530_a10/
[1] eCommerce behavior data from multi category store, https://www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
[2] eCommerce events history in cosmetics shop, https://www.kaggle.com/datasets/mkechinov/ecommerce-events-history-in-cosmetics-shop
[3] eCommerce events history in electronics store, https://www.kaggle.com/datasets/mkechinov/ecommerce-events-history-in-electronics-store
[4] eCommerce purchase history from jewelry store, https://www.kaggle.com/datasets/mkechinov/ecommerce-purchase-history-from-jewelry-store
[5] RetailRocket recommender system dataset, https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset
[6] Personalized web search challenge, , 2013 https://kaggle.com/competitions/yandex-personalized-web-search-challenge
[7] M. M. Afsar, T. Crump, and B. H. Far, Reinforcement learning based recommender systems: A survey, 2021, arXiv: 2101.06286
[8] R. Agrawal, R. Srikant, et al., “Fast algorithms for mining association rules”, Proc. 20th int. conf. very large data bases, VLDB 1994 (Santiago, Chile, 1994), 487–499
[9] F. Belletti, K. Lakshmanan, W. Krichene, Y. Chen, and J. R. Anderson, Scalable realistic recommendation datasets through fractal expansions, 2019, arXiv: 1901.08910
[10] A. Bellog'in and A. Said, “Improving accountability in recommender systems research through reproducibility”, User Modeling and User-Adapted Interaction, 31 (2021), 941–977 | DOI
[11] H. Bharadhwaj, H. Park, and B. Y. Lim, “Recgan: Recurrent generative adversarial networks for recommendation systems”, Proceedings of the 12th ACM Conference on Recommender Systems, ACM, New York, NY, USA, 2018, 372–376 | DOI | MR
[12] J. Bobadilla, A. Gutiérrez, R. Yera, and L. Martínez, Creating synthetic datasets for collaborative filtering recommender systems using generative adversarial networks, 2023, arXiv: 2303.01297 | Zbl
[13] D. Bountouridis, J. Harambam, M. Makhortykh, M. Marrero, N. Tintarev, and C. Hauff, “SIREN: A simulation framework for understanding the effects of recommender systems in online news environments”, Proceedings of the Conference on Fairness, Accountability, and Transparency, Association for Computing Machinery, New York, NY, USA, 2019, 150–159 | DOI
[14] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, OpenAI Gym, 2016, arXiv: 1606.01540
[15] X. Cai, J. Han, and L. Yang, “Generative adversarial network based heterogeneous bibliographic network representation for personalized citation recommendation”, Proceedings of the AAAI Conference on Artificial Intelligence, 32:1 (2018) | MR
[16] D.-K. Chae, J.-S. Kang, S.-W. Kim, and J. Choi, “Rating augmentation with generative adversarial networks towards accurate collaborative filtering”, The World Wide Web Conference, Association for Computing Machinery, New York, NY, USA, 2019, 2616–2622 | DOI | MR
[17] D.-K. Chae, J.-S. Kang, S.-W. Kim, and J.-T. Lee, “CFGAN: A generic collaborative filtering framework based on generative adversarial networks”, Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Association for Computing Machinery, New York, NY, USA, 2018, 137–146 | MR
[18] H. Chen and J. Li, “Adversarial tensor factorization for context-aware recommendation”, Proceedings of the 13th ACM Conference on Recommender Systems, Association for Computing Machinery, New York, NY, USA, 2019, 363–367 | DOI
[19] M. Chen, A. Beutel, P. Covington, S. Jain, F. Belletti, and E. H. Chi, Top-k off-policy correction for a REINFORCE recommender system, 2018, arXiv: 1812.02353
[20] M. Chen, A. Beutel, P. Covington, S. Jain, F. Belletti, and E. H. Chi, “Top-k off-policy correction for a reinforce recommender system”, Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, Association for Computing Machinery, New York, NY, USA, 2019, 456–464 | DOI
[21] X. Chen, L. Yao, J. McAuley, G. Zhou, and X. Wang, “Deep reinforcement learning in recommender systems: A survey and new perspectives”, Knowledge-Based Systems, 264 (2023), 110335 | DOI
[22] E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun, “Generating multi-label discrete patient records using generative adversarial networks”, Proceedings of the 2nd Machine Learning for Healthcare Conference (18–19 Aug, 2017), Proceedings of Machine Learning Research, 68, eds. F. Doshi-Velez, J. Fackler, D. Kale, R. Ranganath, B. Wallace, and J. Wiens, 2017, 286–305
[23] A. D'Amour, H. Srinivasan, J. Atwood, P. Baljekar, D. Sculley, and Y. Halpern, “Fairness is not static: Deeper understanding of long term fairness via simulation studies”, Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Association for Computing Machinery, New York, NY, USA, 2020, 525–534 | DOI | MR
[24] S. Dean, S. Rich, and B. Recht, “Recommendations and user agency: The reachability of collaboratively-filtered information”, Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Association for Computing Machinery, New York, NY, USA, 2020, 436–445 | DOI
[25] R. Deffayet, P. Hager, J.-M. Renders, and M. de Rijke, “An offline metric for the debiasedness of click models”, Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, Association for Computing Machinery, New York, NY, USA, 2023, 558–568
[26] R. Deffayet, T. Thonet, D. Hwang, V. Lehoux, J.-M. Renders, and M. de Rijke, SARDINE: A simulator for automated recommendation in dynamic and interactive environments, 2023
[27] R. Deffayet, T. Thonet, J.-M. Renders, and M. de Rijke, “Generative slate recommendation with reinforcement learning”, Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, Association for Computing Machinery, New York, NY, USA, 2023, 580–588 | DOI
[28] M. del Carmen Rodríguez-Hernández, S. Ilarri, R. Hermoso, and R. T. Lado, “Towards trajectory-based recommendations in museums: Evaluation of strategies using mixed synthetic and real data”, EUSPN/ICTH 2017 | Zbl
[29] M. del Carmen Rodríguez-Hernández, S. Ilarri, R. Trillo, and R. Hermoso, “Context-aware recommendations using mobile p2p”, Proceedings of the 15th International Conference on Advances in Mobile Computing Multimedia, Association for Computing Machinery, New York, NY, USA, 2017, 82–91
[30] M. Deshpande and G. Karypis, “Item-based top-n recommendation algorithms”, ACM Transactions on Information Systems (TOIS), 22:1 (2004), 143–177 | DOI
[31] W. Fan, T. Derr, Y. Ma, J. Wang, J. Tang, and Q. Li, “Deep adversarial social recommendation”, Proceedings of the 28th International Joint Conference on Artificial Intelligence, AAAI Press, 2019, 1351–1357
[32] D. Fleder and K. Hosanagar, “Blockbuster culture's next rise or fall: The impact of recommender systems on sales diversity”, Management Science, 55 (2007)
[33] C. Gao, K. Huang, J. Chen, Y. Zhang, B. Li, P. Jiang, S. Wang, Z. Zhang, and X. He, “Alleviating Matthew effect of offline reinforcement learning in interactive recommendation”, Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, Association for Computing Machinery, New York, NY, USA, 2023, 238–248
[34] C. Gao, S. Li, Y. Zhang, J. Chen, B. Li, W. Lei, P. Jiang, and X. He, “KuaiRand: An unbiased sequential recommendation dataset with randomly exposed videos”, Proceedings of the 31st ACM International Conference on Information Knowledge Management (oct. 2022), ACM
[35] M. Gao, J. Zhang, J. Yu, J. Li, J. Wen, and Q. Xiong, “Recommender systems based on generative adversarial networks: A problem-driven perspective”, Information Sciences, 546 (2021), 1166–1185 | DOI | MR
[36] N. Gao, H. Xue, W. Shao, S. Zhao, K. K. Qin, A. Prabowo, M. S. Rahaman, and F. D. Salim, “Generative adversarial networks for spatio-temporal data: A survey”, ACM Trans. Intell. Syst. Technol., 13:2 (2022) | MR
[37] J. Gauci, E. Conti, Y. Liang, K. Virochsiri, Z. Chen, Y. He, Z. Kaden, V. Narayanan, and X. Ye, Horizon: Facebook's open source applied reinforcement learning platform, 2018, arXiv: 1811.00260
[38] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative Adversarial Networks, e-prints, 2014
[39] I. J. Goodfellow, NIPS 2016 tutorial: Generative adversarial networks, 2017, arXiv: 1701.00160 | Zbl
[40] G. Guo, H. Zhou, B. Chen, Z. Liu, X. Xu, X. Chen, Z. Dong, and X. He, “IPGAN: Generating informative item pairs by adversarial sampling”, IEEE Transactions on Neural Networks and Learning Systems, 33:2 (2022), 694–706 | DOI | MR
[41] S. Gupta, P. Hager, J. Huang, A. Vardasbi, and H. Oosterhuis, “Recent advances in the foundations and applications of unbiased learning to rank”, Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, Association for Computing Machinery, New York, NY, USA, 2023, 3440–3443
[42] B. Hao, M. Zhang, W. Ma, S. Shi, X. Yu, H. Shan, Y. Liu, and S. Ma, A large-scale rich context query and recommendation dataset in online knowledge-sharing, 2021
[43] N. Hazrati and F. Ricci, “Simulating users' interactions with recommender systems”, Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization, Association for Computing Machinery, New York, NY, USA, 2022, 95–98 | DOI
[44] R. He and J. McAuley, “Fusing similarity models with Markov chains for sparse sequential recommendation”, 2016 IEEE 16th International Conference on Data Mining (ICDM), 2016, 191–200
[45] X. He, Z. He, X. Du, and T.-S. Chua, “Adversarial personalized ranking for recommendation”, The 41st International ACM SIGIR Conference on Research Development in Information Retrieval, Association for Computing Machinery, New York, NY, USA, 2018, 355–364
[46] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based recommendations with recurrent neural networks”, 4th International Conference on Learning Representations, ICLR 2016, Conference Track Proceedings (San Juan, Puerto Rico, May 2–4, 2016), eds. Y. Bengio and Y. LeCun, 2016
[47] J. Ho and S. Ermon, “Generative adversarial imitation learning”, Advances in Neural Information Processing Systems, 29, eds. D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Curran Associates, Inc., 2016
[48] K. Houkjær, K. Torp, and R. Wind, “Simple and realistic data generation”, Very Large Data Bases Conference, 2006
[49] J. Huang, H. Oosterhuis, M. De Rijke, and H. Van Hoof, “Keeping dataset biases out of the simulation: A debiased simulator for reinforcement learning based recommender systems”, Proceedings of the 14th ACM Conference on Recommender Systems, 2020, 190–199 | DOI
[50] E. Ie, C. Hsu, M. Mladenov, V. Jain, S. Narvekar, J. Wang, R. Wu, and C. Boutilier, RecSim: A configurable simulation platform for recommender systems, 2019, arXiv: 1909.04847
[51] E. Ie, V. Jain, J. Wang, S. Narvekar, R. Agarwal, R. Wu, H.-T. Cheng, T. Chandra, and C. Boutilier, “SlateQ: A tractable decomposition for reinforcement learning with recommendation sets”, Proceedings of the 28th International Joint Conference on Artificial Intelligence, AAAI Press, 2019, 2592–2599
[52] E. Ie, V. Jain, J. Wang, S. Narvekar, R. Agarwal, R. Wu, H.-T. Cheng, T. Chandra, and C. Boutilier, “Slateq: A tractable decomposition for reinforcement learning with recommendation sets”, Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, International Joint Conferences on Artificial Intelligence Organization, 2019, 2592–2599
[53] S. Ilarri, R. Hermoso, R. Trillo-Lado, and M. del Carmen Rodríguez-Hernández, “A review of the role of sensors in mobile context-aware recommendation systems”, International Journal of Distributed Sensor Networks, 11:11 (2015), 489264 | DOI
[54] G. W. Imbens and D. B. Rubin, Causal inference in statistics, social, and biomedical sciences, Cambridge University Press, 2015 | MR
[55] D. Jannach, L. Lerche, I. Kamehkhosh, and M. Jugovac, “What recommenders recommend: An analysis of recommendation biases and possible countermeasures”, User Modeling and User-Adapted Interaction, 25:5 (2015), 427–491 | DOI | MR
[56] D. Jeske, P. Lin, C. Rendon, R. Xiao, and B. Samadi, “Synthetic data generation capabilties for testing data mining tools”, MILCOM 2006 – 2006 IEEE Military Communications conference, 2006, 1–6
[57] O. Jeunen and B. Goethals, Lessons learned from winning the RecoGym challenge, , 2021 https://olivierjeunen.github.io/recogym/
[58] O. Jeunen, D. Mykhaylov, D. Rohde, F. Vasile, A. Gilotte, and M. Bompaire, Learning from bandit feedback: An overview of the state-of-the-art, 2019, arXiv: 1909.08471
[59] O. Jeunen, D. Rohde, and F. Vasile, On the value of bandit feedback for offline recommender system evaluation, 2019, arXiv: 1907.12384
[60] J. Jin, X. Chen, W. Zhang, Y. Chen, Z. Jiang, Z. Zhu, Z. Su, and Y. Yu, “Multi-scale user behavior network for entire space multi-task learning”, Proceedings of the 31st ACM International Conference on Information Knowledge Management, Association for Computing Machinery, New York, NY, USA, 2022, 874–883
[61] W. Jin, H. Mao, Z. Li, H. Jiang, C. Luo, H. Wen, H. Han, H. Lu, Z. Wang, R. Li, Z. Li, M. X. Cheng, R. Goutam, H. Zhang, K. Subbian, S. Wang, Y. Sun, J. Tang, B. Yin, and X. Tang, Amazon-M2: A multilingual multi-locale shopping session dataset for recommendation and text generation, 2023
[62] T. Joachims, A. Swaminathan, and T. Schnabel, “Unbiased learning-to-rank with biased feedback”, Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, Association for Computing Machinery, New York, NY, USA, 2017, 781–789 | DOI
[63] N. Knyazev and H. Oosterhuis, “A lightweight method for modeling confidence in recommendations with learned beta distributions”, Proceedings of the 17th ACM Conference on Recommender Systems, ACM, 2023
[64] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, “Kronecker graphs: An approach to modeling networks”, Journal of Machine Learning Research, 11:33 (2010), 985–1042 | MR | Zbl
[65] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, “Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication”, Knowledge Discovery in Databases, PKDD 2005, eds. A. M. Jorge, L. Torgo, P. Brazdil, R. Camacho, and J. Gama, Springer, Berlin–Heidelberg, 2005, 133–145
[66] R. Li, X. Wu, and W. Wang, “Adversarial learning to compare: Self-attentive prospective customer recommendation in location based social networks”, Proceedings of the 13th International Conference on Web Search and Data Mining, Association for Computing Machinery, New York, NY, USA, 2020, 349–357
[67] P. Lin, B. Samadi, A. Cipolone, D. Jeske, S. Cox, C. Rendon, D. Holt, and R. Xiao, “Development of a synthetic data set generator for building and testing information discovery systems”, Third International Conference on Information Technology: New Generations (ITNG'06), 2006, 707–712 | MR
[68] Y. Lin, Y. Liu, F. Lin, P. Wu, W. Zeng, and C. Miao, A survey on reinforcement learning for recommender systems, 2021, arXiv: 2109.10665 | MR
[69] R. J. A. Little and D. B. Rubin, Statistical analysis with missing data, John Wiley Sons, 2019 | MR | Zbl
[70] J. Liu, Z. Dou, G. Tang, and S. Xu, JDSearch: A personalized product search dataset with real queries and full interactions, 2023
[71] J. Liu, W. Pan, and Z. Ming, “CofiGAN: Collaborative filtering by generative and discriminative training for one-class recommendation”, Knowledge-Based Systems, 191 (2020), 105255 | DOI
[72] W. Liu, Z.-J. Wang, B. Yao, and J. Yin, “Geo-ALM: PoI recommendation by fusing geographical information and adversarial learning mechanism”, Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence Main track, 08 2019, 1807–1813
[73] Y. Lu, J. Bao, Z. Ma, X. Han, Y. Wu, S. Cui, and X. He, “AUGUST: an automatic generation understudy for synthesizing conversational recommendation datasets”, Findings of the Association for Computational Linguistics: ACL 2023 (Toronto, Canada, July 2023), Association for Computational Linguistics, 2023, 10538–10549
[74] Y. Lyu, S. Dai, P. Wu, Q. Dai, Y. Deng, W. Hu, Z. Dong, J. Xu, S. Zhu, and X.-H. Zhou, A semi-synthetic dataset generation framework for causal inference in recommender systems, 2022, arXiv: 2202.11351
[75] N. Manouselis and C. Costopoulou, “Designing a web-based testing tool for multi-criteria recommender systems”, Engineering Letters, 13:3 (2006), 417–427
[76] N. Manouselis and C. Costopoulou, “Experimental analysis of design choices in multiattribute utility collaborative filtering”, International Journal of Pattern Recognition and Artificial Intelligence, 21:02 (2007), 311–331 | DOI
[77] N. Manouselis and C. Costopoulou, “Preliminary study of the expected performance of maut collaborative filtering algorithms”, The Open Knowlege Society. A Computer Science and Information Systems Manifesto, eds. M. D. Lytras, J. M. Carroll, E. Damiani, R. D. Tennyson, D. Avison, G. Vossen, and P. Ordonez De Pablos, Springer, Berlin, Heidelberg, 2008, 527–536 | DOI
[78] B. M. Marlin, S. T. Roweis, and R. S. Zemel, “Unsupervised learning with non-ignorable missing data”, International Workshop on Artificial Intelligence and Statistics, PMLR 2005, 222–229
[79] F. B. P. Maurera, M. F. Dacrema, L. Saule, M. Scriminaci, and P. Cremonesi, “ContentWise impressions”, Proceedings of the 29th ACM International Conference on Information Knowledge Management, ACM, 2020
[80] J. McInerney, E. Elahi, J. Basilico, Y. Raimond, and T. Jebara, “Accordion: a trainable simulator for long-term interactive systems”, Proceedings of the 15th ACM Conference on Recommender Systems, 2021, 102–113 | DOI
[81] M. Mirza and S. Osindero, Conditional generative adversarial nets, 2014, arXiv: 1411.1784
[82] M. Mladenov, C. Hsu, V. Jain, E. Ie, C. Colby, N. Mayoraz, H. Pham, D. Tran, I. Vendrov, and C. Boutilier, RecSim NG: toward principled uncertainty modeling for recommender ecosystems, 2021, arXiv: 2103.08057
[83] E. Montahaei, D. Alihosseini, and M. S. Baghshah, DGSAN: discrete generative self-adversarial network, 2019, arXiv: 1908.09127
[84] M. Montaner, B. López, and J. L. de la Rosa i Esteva, “Evaluation of recommender systems through simulated users”, International Conference on Enterprise Information Systems, 2004
[85] D. Monti, E. Palumbo, and G. Rizzo, “Sequeval: An offline evaluation framework for sequence-based recommender systems”, Information, 10 (2019), 174 | DOI
[86] D. Monti, G. Rizzo, and M. Morisio, A distributed and accountable approach to offline recommender systems evaluation, 2018, arXiv: 1810.04957
[87] D. Monti, G. Rizzo, and M. Morisio, All you need is ratings: A clustering approach to synthetic rating datasets generation, 2019, arXiv: 1909.00687
[88] K. Murphy, Dynamic Bayesian networks: Representation, inference and learning, Computer Science Division, UC Berkeley, 2002 | MR
[89] T. T. Nguyen, P.-M. Hui, F. M. Harper, L. Terveen, and J. A. Konstan, “Exploring the filter bubble: The effect of using recommender systems on content diversity”, Proceedings of the 23rd International Conference on World Wide Web, Association for Computing Machinery, New York, NY, USA, 2014, 677–686 | DOI
[90] H. Oosterhuis, “Computationally efficient optimization of plackett-luce ranking models for relevance and fairness”, Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Association for Computing Machinery, New York, NY, USA, 2021, 1023–1032 | MR
[91] H. Oosterhuis and M. d. de Rijke, “Robust generalization and safe query-specialization in counterfactual learning to rank”, Proceedings of the Web Conference 2021, Association for Computing Machinery, New York, NY, USA, 2021, 158–170 | DOI
[92] D. H. Park and Y. Chang, “Adversarial sampling and training for semi-supervised information retrieval”, The World Wide Web Conference, Association for Computing Machinery, New York, NY, USA, 2019, 1443–1453 | DOI
[93] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim, “Data synthesis based on generative adversarial networks”, Proc. VLDB Endow., 11:10 (2018), 1071–1083 | DOI
[94] M. Pasinato, C. E. Mello, M.-A. Aufaure, and G. Zimbrao, “Generating synthetic data for context-aware recommender systems”, 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence, 2013, 563–567 | DOI
[95] J. Pearl, “Causal inference in statistics: An overview”, Statistics Surveys, 3 (2009), 96–146 | DOI | MR | Zbl
[96] J. Pearl, Causality: Models, reasoning and inference, Cambridge University Press, 2009 | MR | Zbl
[97] A. Petrov, I. Safilo, D. Tikhonovich, and D. Ignatov, MTS KION implicit contextualised sequential dataset for movie recommendation, 2022
[98] T. W. Philipp Normann, Sophie Baumeister, OTTO recommender systems dataset: A real-world e-commerce dataset for session-based recommender systems research
[99] A. Popescul, D. M. Pennock, and S. Lawrence, “Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments”, Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc, San Francisco, CA, USA, 2001, 437–444
[100] A. Radford, L. Metz, and S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, 2015, arXiv: 1511.06434
[101] D. Rafailidis and F. Crestani, “Adversarial training for review-based recommendations”, Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Association for Computing Machinery, New York, NY, USA, 2019, 1057–1060
[102] K. Ren, Y. Fang, W. Zhang, S. Liu, J. Li, Y. Zhang, Y. Yu, and J. Wang, “Learning multi-touch conversion attribution with dual-attention mechanisms for online advertising”, Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Association for Computing Machinery, New York, NY, USA, 2018, 1433–1442 | MR
[103] M. d. C. Rodríguez Hernández, S. Ilarri, R. Hermoso, and R. Trillo, “DatagenCARS: A generator of synthetic data for the evaluation of context-aware recommendation systems”, Pervasive and Mobile Computing, 38 (2016)
[104] D. Rohde, S. Bonner, T. Dunlop, F. Vasile, and A. Karatzoglou, RecoGym: A reinforcement learning environment for the problem of product recommendation in online advertising, 2018, arXiv: 1808.00720
[105] A. Said and A. Bellogín, “Comparative recommender system evaluation: Benchmarking recommendation frameworks”, Proceedings of the 8th ACM Conference on Recommender Systems, Association for Computing Machinery, New York, NY, USA, 2014, 129–136
[106] O. Sakhi, D. Rohde, and N. Chopin, Fast slate policy optimization: Going beyond Plackett-Luce, 2023
[107] J.-C. Shi, Y. Yu, Q. Da, S.-Y. Chen, and A.-X. Zeng, “Virtual-Taobao: Virtualizing real-world online retail environment for reinforcement learning”, Proceedings of the AAAI Conference on Artificial Intelligence, 33 (2019), 4902–4909 | DOI
[108] A. Suglia, C. Greco, P. Basile, G. Semeraro, and A. Caputo, “An automatic procedure for generating datasets for conversational recommender systems”, Working Notes of CLEF 2017 - Conference and Labs of the Evaluation Forum (Dublin, Ireland, September 11-14, 2017), CEUR Workshop Proceedings, 1866, eds. L. Cappellato, N. Ferro, L. Goeuriot, and T. Mandl, 2017 CEUR-WS.org
[109] Z. Sun, B. Wu, Y. Wu, and Y. Ye, “APL: Adversarial pairwise learning for recommender systems”, Expert Syst. Appl., 118:C (2019), 573–584 | DOI
[110] Z. Sun, Z. Si, X. Zang, D. Leng, Y. Niu, Y. Song, X. Zhang, and J. Xu, KuaiSar: A unified search and recommendation dataset, 2023
[111] A. Swaminathan, A. Krishnamurthy, A. Agarwal, M. Dudik, J. Langford, D. Jose, and I. Zitouni, “Off-policy evaluation for slate recommendation”, Advances in Neural Information Processing Systems, 30, eds. I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Curran Associates, Inc., 2017
[112] Z. Szlávik, W. Kowalczyk, and M. Schut, “Diversity measurement of recommender systems under different user choice models”, Proceedings of the International AAAI Conference on Web and Social Media, 5:1 (2021), 369–376 | DOI
[113] J. Tang, X. Du, X. He, F. Yuan, Q. Tian, and T.-S. Chua, “Adversarial training towards robust multimedia recommender system”, IEEE Transactions on Knowledge and Data Engineering, 32:5 (2020), 855–867 | DOI
[114] Y. Tong, Y. Luo, Z. Zhang, S. Sadiq, and P. Cui, “Collaborative generative adversarial network for recommendation systems”, 2019 IEEE 35th International Conference on Data Engineering Workshops, ICDEW, 2019, 161–168 | MR
[115] D. Tran, M. W. Hoffman, D. Moore, C. Suter, S. Vasudevan, and A. Radul, “Simple, distributed, and accelerated probabilistic programming”, Advances in Neural Information Processing Systems, 31, eds. S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Curran Associates, Inc., 2018
[116] T. Tran, R. Sweeney, and K. Lee, “Adversarial Mahalanobis distance-based attentive song recommender for automatic playlist continuation”, Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Association for Computing Machinery, New York, NY, USA, 2019, 245–254
[117] J. Traupman and R. Wilensky, Collaborative quality filtering: Establishing consensus or recovering ground truth?, International Workshop on Knowledge Discovery on the Web, Springer, 2004, 73–86
[118] K. Tso and L. Schmidt-Thieme, “Empirical analysis of attribute-aware recommender system algorithms using synthetic data”, Journal of Computers, 1 (2006) | DOI
[119] K. H. L. Tso and L. Schmidt-Thieme, “Empirical analysis of attribute-aware recommendation algorithms with variable synthetic data”, Data Science and Classification, eds. V. Batagelj, H.-H. Bock, A. Ferligoj, and A. Žiberna, Springer, Berlin–Heidelberg, 2006, 271–278 | DOI | MR
[120] J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang, and D. Zhang, “IRGAN: A minimax game for unifying generative and discriminative information retrieval models”, Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Association for Computing Machinery, New York, NY, USA, 2017, 515–524
[121] K. Wang, Z. Zou, M. Zhao, Q. Deng, Y. Shang, Y. Liang, R. Wu, X. Shen, T. Lyu, and C. Fan, RL4RS: A real-world dataset for reinforcement learning based recommender system, 2023
[122] Q. Wang, H. Yin, Z. Hu, D. Lian, H. Wang, and Z. Huang, “Neural memory streaming recommender networks with adversarial training”, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, Association for Computing Machinery, New York, NY, USA, 2018, 2467–2475 | DOI
[123] Q. Wang, H. Yin, H. Wang, Q. V. H. Nguyen, Z. Huang, and L. Cui, “Enhancing collaborative filtering with generative augmentation”, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, Association for Computing Machinery, New York, NY, USA, 2019, 548–556 | DOI
[124] Z. Wang, M. Gao, X. Wang, J. Yu, J. Wen, and Q. Xiong, “A minimax game for generative and discriminative sample models for recommendation”, Advances in Knowledge Discovery and Data Mining, 23rd Pacific-Asia Conference, PAKDD 2019, Proceedings (Macau, China, April 14-17, 2019), v. II, Springer-Verlag, Berlin–Heidelberg, 2019, 420–431
[125] C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing, “Recurrent recommender networks”, Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, Association for Computing Machinery, New York, NY, USA, 2017, 495–503
[126] X. Xin, T. Pimentel, A. Karatzoglou, P. Ren, K. Christakopoulou, and Z. Ren, “Rethinking reinforcement learning for recommendation: A prompt perspective”, Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Association for Computing Machinery, New York, NY, USA, 2022, 1347–1357
[127] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, Modeling Tabular Data Using Conditional GAN, Curran Associates Inc., Red Hook, NY, USA, 2019
[128] S. Yao, Y. Halpern, N. Thain, X. Wang, K. Lee, F. Prost, E. H. Chi, J. Chen, and A. Beutel, Measuring recommender system effects with simulated users, 2021, arXiv: 2101.04526
[129] F. Yuan, L. Yao, and B. Benatallah, “Adversarial collaborative auto-encoder for top-n recommendation”, 2019 International Joint Conference on Neural Networks (IJCNN), 2019, 1–8
[130] G. Yuan, F. Yuan, Y. Li, B. Kong, S. Li, L. Chen, M. Yang, C. Yu, B. Hu, Z. Li, Y. Xu, and X. Qie, Tenrec: A large-scale multipurpose benchmark dataset for recommender systems, 2023
[131] Y. Zhang, F. Feng, X. He, T. Wei, C. Song, G. Ling, and Y. Zhang, “Causal intervention for leveraging popularity bias in recommendation”, Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (New York, NY, USA), Association for Computing Machinery, 2021, 11–20
[132] W. Zhao, B. Wang, J. Ye, Y. Gao, M. Yang, and X. Chen, “Plastic: Prioritize long and short-term information in top-n recommendation using adversarial training”, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, 07 2018, 3676–3682
[133] F. Zhou, R. Yin, K. Zhang, G. Trajcevski, T. Zhong, and J. Wu, “Adversarial point-of-interest recommendation”, The World Wide Web Conference, Association for Computing Machinery, New York, NY, USA, 2019, 3462–34618 | DOI