Voir la notice du chapitre de livre
@article{ZNSL_2023_530_a1,
author = {M. Dziuba and I. Jarsky and V. Efimova and A. Filchenkov},
title = {Image vectorization: a review},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {6--23},
year = {2023},
volume = {530},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_530_a1/}
}
M. Dziuba; I. Jarsky; V. Efimova; A. Filchenkov. Image vectorization: a review. Zapiski Nauchnykh Seminarov POMI, Investigations on applied mathematics and informatics. Part II–2, Tome 530 (2023), pp. 6-23. http://geodesic.mathdoc.fr/item/ZNSL_2023_530_a1/
[1] A. Carlier, M. Danelljan, A. Alahi, and R. Timofte, Deepsvg: A hierarchical generative network for vector graphics animation, 2020, arXiv: 2007.11301
[2] W. Dai, T. Luo, and J. Shen, “Automatic image vectorization using superpixels and random walkers”, 2013 6th International Congress on Image and Signal Processing (CISP), v. 2, 2013, 922–926 | DOI | MR
[3] L. Deng, “The mnist database of handwritten digit images for machine learning research”, IEEE Signal Processing Magazine, 29:6 (2012), 141–142 | DOI
[4] V. Efimova, A. Chebykin, I. Jarsky, E. Prosvirnin, and A. Filchenkov, Neural style transfer for vector graphics, 2023
[5] V. Efimova, I. Jarsky, I. Bizyaev, and A. Filchenkov, Conditional vector graphics generation for music cover images, 2022, arXiv: 2205.07301
[6] V. Egiazarian, O. Voynov, A. Artemov, D. Volkhonskiy, A. Safin, M. Taktasheva, D. Zorin, and E. Burnaev, “Deep vectorization of technical drawings”, Computer Vision–ECCV 2020, 16th European Conference, Proceedings (Glasgow, UK, August 23–28, 2020), v. XIII, Springer, 2020, 582–598 | DOI
[7] P. Esser, R. Rombach, and B. Ommer, “Taming transformers for high-resolution image synthesis”, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, 12873–12883
[8] K. Frans, L. B. Soros, and O. Witkowski, Clipdraw: Exploring text-to-drawing synthesis through language-image encoders, 2021, arXiv: 2106.14843
[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks”, Communications of the ACM, 63:11 (2020), 139–144 | DOI
[10] G. J. Hettinga, J. Echevarria, and J. Kosinka, Efficient image vectorisation using mesh colours, The Eurographics Association, 2021
[11] A. Jain, A. Xie, and P. Abbeel, Vectorfusion: Text-to-svg by abstracting pixel-based diffusion models, 2022, arXiv: 2211.11319
[12] S. Jeschke, D. Cline, and P. Wonka, “Estimating color and texture parameters for vector graphics”, Computer Graphics Forum, 30, Wiley Online Library, 2011, 523–532 | DOI
[13] D. P. Kingma and M. Welling, Auto-encoding variational bayes, 2013, arXiv: 1312.6114
[14] An introduction to variational autoencoders, 2019, arXiv: 1906.02691
[15] Y.-K. Lai, S.-M. Hu, and R. R. Martin, “Automatic and topology-preserving gradient mesh generation for image vectorization”, ACM Transactions on Graphics (TOG), 28:3 (2009), 1–8 | DOI | MR
[16] G. Lecot and B. Lévy, “Ardeco: automatic region detection and conversion”, Eurographics Symposium on Rendering, 2006 | Zbl
[17] T.-M. Li, M. Lukáč, “Differentiable vector graphics rasterization for editing and learning”, G. Michaël, and J. Ragan-Kelley, 39:6 (2020), 193:1–193:15
[18] Z. Liao, H. Hoppe, D. Forsyth, and Y. Yu, “A subdivision-based representation for vector image editing”, IEEE transactions on visualization and computer graphics, 18:11 (2012), 1858–1867 | DOI
[19] R. G. Lopes, D. Ha, D. Eck, and J. Shlens, A learned representation for scalable vector graphics, 2019, arXiv: 1904.02632
[20] X. Ma, Y. Zhou, X. Xu, B. Sun, V. Filev, N. Orlov, Y. Fu, and H. Shi, “Towards layer-wise image vectorization”, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, 16314–16323
[21] B. Price and W. Barrett, “Object-based vectorization for interactive image editing”, The Visual Computer, 22 (2006), 661–670 | DOI
[22] S. Pun and C. Tsang, Vtracer, 2020
[23] P. Reddy, M. Gharbi, M. Lukac, and N. J. Mitra, “Im2vec: Synthesizing vector graphics without vector supervision”, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, 7342–7351
[24] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models”, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, 10684–10695
[25] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans, et al., “Photorealistic text-to-image diffusion models with deep language understanding”, Advances in Neural Information Processing Systems, 35 (2022), 36479–36494
[26] P. Schaldenbrand, Z. Liu, and J. Oh, Styleclipdraw: Coupling content and style in text-to-drawing translation, 2022, arXiv: 2202.12362
[27] I.-C. Shen and B.-Y. Chen, “Clipgen: A deep generative model for clipart vectorization and synthesis”, IEEE Transactions on Visualization and Computer Graphics, 28:12 (2021), 4211–4224 | DOI
[28] H. Su, J. Niu, X. Liu, J. Cui, and J. Wan, Vectorization of raster manga by deep reinforcement learning, 2021, arXiv: 2110.04830
[29] J. Sun, L. Liang, F. Wen, and H.-Y. Shum, “Image vectorization using optimized gradient meshes”, ACM Transactions on Graphics (TOG), 26:3 (2007), 11–es | DOI
[30] S. Swaminarayan and L. Prasad, “Rapid automated polygonal image decomposition”, 35th IEEE Applied Imagery and Pattern Recognition Workshop (AIPR'06), 2006, 28–28
[31] X. Tian and T. Günther, “A survey of smooth vector graphics: Recent advances in representation, creation, rasterization and image vectorization”, IEEE Transactions on Visualization and Computer Graphics, 2022
[32] Y. Wang and Z. Lian, “Deepvecfont: synthesizing high-quality vector fonts via dual-modality learning”, ACM Transactions on Graphics (TOG), 40:6 (2021), 1–15
[33] G. Xie, X. Sun, X. Tong, and D. Nowrouzezahrai, “Hierarchical diffusion curves for accurate automatic image vectorization”, ACM Transactions on Graphics (TOG), 33:6 (2014), 1–11 | DOI
[34] M. Yang, H. Chao, C. Zhang, J. Guo, L. Yuan, and J. Sun, “Effective clipart image vectorization through direct optimization of bezigons”, IEEE Transactions on Visualization and Computer Graphics, 22 (2016), 1063–1075 | DOI
[35] J. Yu, Y. Xu, J. Y. Koh, T. Luong, G. Baid, Z. Wang, V. Vasudevan, A. Ku, Y. Yang, B. K. Ayan, et al., Scaling autoregressive models for content-rich text-to-image generation, 2022, arXiv: 2206.10789
[36] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric”, Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, 586–595
[37] S. Zhao, F. Durand, and C. Zheng, “Inverse diffusion curves using shape optimization”, IEEE transactions on visualization and computer graphics, 24:7 (2017), 2153–2166 | DOI
[38] H. Zhou, J. Zheng, and L. Wei, “Representing images using curvilinear feature driven subdivision surfaces”, IEEE transactions on image processing, 23:8 (2014), 3268–3280 | DOI | MR | Zbl