On the exponential mapping of geodesics in sub-Riemannian geometry
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 153-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The equations of admissible geodesics for a nonholonomic distribution on Riemannian manifold are written in the mixed bundle. The differential of the exponential mapping for a nonholonomic distribution with the cyclicity condition for vertical coordinates is calculated. This differential is non-degenerate if the distribution is strongly bracket generating. The equations of admissible geodesics on 3-dimensional Lie groups are studied.
@article{ZNSL_2023_528_a9,
     author = {V. R. Krym},
     title = {On the exponential mapping of geodesics in {sub-Riemannian} geometry},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {153--165},
     year = {2023},
     volume = {528},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a9/}
}
TY  - JOUR
AU  - V. R. Krym
TI  - On the exponential mapping of geodesics in sub-Riemannian geometry
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 153
EP  - 165
VL  - 528
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a9/
LA  - ru
ID  - ZNSL_2023_528_a9
ER  - 
%0 Journal Article
%A V. R. Krym
%T On the exponential mapping of geodesics in sub-Riemannian geometry
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 153-165
%V 528
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a9/
%G ru
%F ZNSL_2023_528_a9
V. R. Krym. On the exponential mapping of geodesics in sub-Riemannian geometry. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 153-165. http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a9/

[1] A. M. Vershik, V. Ya. Gershkovich, “Negolonomnye dinamicheskie sistemy, geometriya raspredelenii i variatsionnye zadachi”, Itogi Nauki i Tekhniki, ser. Sovr. Probl. Mat., Fund. Napr., 16, 1987, 5–85

[2] V. Ya. Gershkovich, “Dvustoronnie otsenki metrik, porozhdennykh absolyutno negolonomnymi raspredeleniyami na rimanovykh mnogoobraziyakh”, Dokl. AN, 278:5 (1984), 1040–1044

[3] A. M. Vershik, V. Ya. Gershkovich, “Otsenka funktsionalnoi razmernosti prostranstva orbit rostkov raspredelenii obschego polozheniya”, Matem. zametki, 44 (1988), 596–603

[4] M. Gromov, “Carnot—Carathéodory spaces seen from within”, Sub-Riemannian geometry, Proceedings of the satellite meeting of the first European congress of mathematics ‘Journées nonholonomes: géométrie sous-riemannienne, théorie du contrôle, robotique’ (Paris, France, June 30–July 1, 1992), Birkhäuser, Basel, 1996, 79–323

[5] R. S. Strichartz, “Sub-Riemannian geometry”, J. Differ. Geom., 24 (1986), 221–263

[6] V. R. Krym, “Negolonomnye geodezicheskie kak resheniya integralnykh uravnenii Eilera–Lagranzha i differentsial eksponentsialnogo otobrazheniya”, Vestn. S.-Peterb. un-ta. Ser. 1, 3 (2009), 31–40

[7] E. M. Gorbatenko, “Differentsialnaya geometriya negolonomnykh mnogoobrazii (po V. V. Vagneru)”, Geom. sb. Tomskogo un-ta, 26 (1985), 31–43

[8] V. R. Krym, N. N. Petrov, “Uravneniya dvizheniya zaryazhennoi chastitsy v pyatimernoi modeli obschei teorii otnositelnosti s chetyrekhmernym negolonomnym prostranstvom skorostei”, Vestn. S.-Peterb. un-ta. Ser. 1, 1 (2007), 62–70

[9] V. R. Krym, N. N. Petrov, “Tenzor krivizny i uravneniya Einshteina dlya chetyrekhmernogo negolonomnogo raspredeleniya”, Vestn. S.-Peterb. un-ta. Ser. 1, 3 (2008), 68–80

[10] V. R. Krym, “Tenzor krivizny Skhoutena i uravnenie Yakobi v subrimanovoi geometrii”, Zap. nauchn. semin. POMI, 498, 2020, 121–134

[11] N. N. Petrov, “Suschestvovanie anormalnykh kratchaishikh geodezicheskikh v subrimanovoi geometrii”, Vestn. S.-Peterb. un-ta. Ser. 1. Vyp. 3, 15 (1993), 28–32

[12] N. N. Petrov, “O kratchaishikh subrimanovykh geodezicheskikh”, Differents. uravneniya, 30:5 (1994), 768–775

[13] R. Montgomery, “Abnormal minimizers”, SIAM J. Control Optim., 32:6 (1994), 1605–1620

[14] R. Montgomery, “A survey of singular curves in sub-Riemannian geometry”, J. Dyn. Control Syst., 1:1 (1995), 49–90

[15] B. Bonnard, M. Chyba, Singular trajectories and their role in control theory, MATHAPPLIC, 40, Springer, Paris, 2003

[16] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005

[17] V. R. Krym, “The Schouten Curvature for a Nonholonomic Distribution in Sub-Riemannian Geometry and Jacobi Fields”, CEUR Workshop Proceedings, 2098, 2018, 213–227

[18] V. R. Krym, “Comparison of basic equations of the Kaluza-Klein theory with the nonholonomic model of space-time of the sub-Lorentzian geometry”, Int. J. Modern Physics A, 38:9–10 (2023), 2350049

[19] V. R. Krym, “Uravnenie Yakobi dlya gorizontalnykh geodezicheskikh na negolonomnom raspredelenii i tenzor krivizny Skhoutena”, Diff. Ur. Prots. Upr., 3 (2018), 64–94

[20] V. R. Krym, “Polya Yakobi dlya negolonomnogo raspredeleniya”, Vestn. S.-Peterb. un-ta. Ser. 1, 4 (2010), 51–61

[21] Yu. D. Burago, V. A. Zalgaller, Vvedenie v rimanovu geometriyu, Nauka, SPb., 1994

[22] A. M. Vershik, V. Ya. Gershkovich, “Geometriya negolonomnoi sfery trekhmernykh grupp Li”, Geometriya i teoriya osobennostei v nelineinykh uravneniyakh. Novoe v globalnom analize, Voronezh, 1987, 61–75

[23] A. M. Vershik, V. Ya. Gershkovich, “Rassloenie nilpotentnykh algebr Li nad negolonomnym mnogoobraziem (nilpotentizatsiya)”, Zap. nauchn. semin. LOMI, 172, 1989, 21–40

[24] A. M. Vershik, V. Ya. Gershkovich, “Geodezicheskii potok na $\mathrm{SL}(2,\mathbb{R})$ s negolonomnymi ogranicheniyami”, Zap. nauchn. semin. LOMI, 155, 1986, 7–17

[25] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya, Nauka, M., 1986