Cooperative envy-free division
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 116-133

Voir la notice de l'article provenant de la source Math-Net.Ru

Relying on configuration spaces and equivariant topology, we study a general “cooperative envy-free division problem” where the players have more freedom of expressing their preferences (compared to the classical setting of the Stromquist-Woodall-Gale theorem). A group of players want to cut a “cake” $I=[0,1]$ and divide among themselves the pieces in an envy-free manner. Once the cake is cut and served in plates on a round table (at most one piece per plate), each player makes her choice by pointing at one (or several) plates she prefers. The novelty is that her choice may depend on the whole allocation configuration. In particular, a player may choose an empty plate (possibly preferring one of the empty plates over the other), and take into account not only the content of her preferred plate, but also the content of the neighbouring plates. We show that if the number of players is a prime power, in this setting an envy-free division still exists under standard assumptions that the preferences are closed.
@article{ZNSL_2023_528_a7,
     author = {D. Joji\'c and G. Panina and R. \v{Z}ivaljevi\'c},
     title = {Cooperative envy-free division},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {116--133},
     publisher = {mathdoc},
     volume = {528},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a7/}
}
TY  - JOUR
AU  - D. Jojić
AU  - G. Panina
AU  - R. Živaljević
TI  - Cooperative envy-free division
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 116
EP  - 133
VL  - 528
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a7/
LA  - en
ID  - ZNSL_2023_528_a7
ER  - 
%0 Journal Article
%A D. Jojić
%A G. Panina
%A R. Živaljević
%T Cooperative envy-free division
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 116-133
%V 528
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a7/
%G en
%F ZNSL_2023_528_a7
D. Jojić; G. Panina; R. Živaljević. Cooperative envy-free division. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 116-133. http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a7/