Classification of groups generated by involutions of two-row Young tableaux
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 107-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

If an arbitrary Young diagram is given, then we can associate with it a group acting on the set of all Young tableaux of this form. It turns out that if the diagram consists of two rows, this group is always isomorphic to either a symmetric or an alternating group. In the paper this alternative is resolved in terms of the lengths of the two rows.
@article{ZNSL_2023_528_a6,
     author = {M. Germanskov},
     title = {Classification of groups generated by involutions of two-row {Young} tableaux},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {107--115},
     year = {2023},
     volume = {528},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a6/}
}
TY  - JOUR
AU  - M. Germanskov
TI  - Classification of groups generated by involutions of two-row Young tableaux
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 107
EP  - 115
VL  - 528
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a6/
LA  - ru
ID  - ZNSL_2023_528_a6
ER  - 
%0 Journal Article
%A M. Germanskov
%T Classification of groups generated by involutions of two-row Young tableaux
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 107-115
%V 528
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a6/
%G ru
%F ZNSL_2023_528_a6
M. Germanskov. Classification of groups generated by involutions of two-row Young tableaux. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 107-115. http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a6/

[1] A. Bender, D. Knuth, “Enumeration of plane partitions”, J. Comb. Th. A, 13 (1972), 40–54

[2] A. N. Kirillov, A. D. Berenstein, “Groups generated by involutions, Gelfand–Tsetlin patterns, and combinatorics of Young tableaux”, Algebra i Analiz, 7:1 (1995), 92–152

[3] Judy Hsin-Hui Chiang, Anh Trong Nam Hoang, Matthew Kendall, Ryan Lynch, Son Nguyen, Benjamin Przybocki, Janabel Xia, Bender–Knuth involutions on linear extensions of posets, arXiv: 2302.12425 | DOI

[4] U. Fulton, Tablitsy Yunga i ikh prilozheniya k teorii predstavlenii i geometrii, MTsNMO, 2006

[5] M. V. Germanskov, “Opisanie grupp, porozhdennykh involyutsiyami dvukhstrochechnykh tablits Yunga”, Zap. nauchn. semin. POMI, 517, 2022, 70–81

[6] P. A. Pozdeev, “Prosteishie diagrammy Yunga i gruppy, porozhdennye ikh tablitsami”, Zap. nauchn. semin. POMI, 517, 2022, 151–161

[7] R. Stenli, Perechislitelnaya kombinatorika, Izdatelstvo “Mir”, 1990

[8] A. M. Vershik, N. V. Tsilevich, “Gruppy, porozhdennye involyutsiyami rombovidnykh grafov, i deformatsii ortogonalnoi formy Yunga”, Zap. nauchn. semin. POMI, 481, 2019

[9] A. M. Vershik, “Gruppy porozhdennye involyutsiyami, perechisleniya posetov i tsentralnye mery”, Uspekhi matem nauk, 76:4 (2021), 143–144