@article{ZNSL_2023_528_a5,
author = {A. M. Vershik and V. N. Ivanov},
title = {Characters of the infinite alternating group ${\mathfrak{A}}_{\mathbb{N}}$ and ${\mathbb{N}}$-graded quotient graphs over involution},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {91--106},
year = {2023},
volume = {528},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a5/}
}
TY - JOUR
AU - A. M. Vershik
AU - V. N. Ivanov
TI - Characters of the infinite alternating group ${\mathfrak{A}}_{\mathbb{N}}$ and ${\mathbb{N}}$-graded quotient graphs over involution
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2023
SP - 91
EP - 106
VL - 528
UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a5/
LA - en
ID - ZNSL_2023_528_a5
ER -
%0 Journal Article
%A A. M. Vershik
%A V. N. Ivanov
%T Characters of the infinite alternating group ${\mathfrak{A}}_{\mathbb{N}}$ and ${\mathbb{N}}$-graded quotient graphs over involution
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 91-106
%V 528
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a5/
%G en
%F ZNSL_2023_528_a5
A. M. Vershik; V. N. Ivanov. Characters of the infinite alternating group ${\mathfrak{A}}_{\mathbb{N}}$ and ${\mathbb{N}}$-graded quotient graphs over involution. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 91-106. http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a5/
[1] T. Geetha, A. Prasad, “Comparison of Gelfand–Tsetlin bases for alternating and symmetric groups”, Algebras and Representation Theory, 21 (2018), 131–143
[2] G. D. James, A. Kerber, The Representation Theory of the Symmetric Group, Cambridge University Press, Cambridge, 1984
[3] S. V. Kerov, Asymptotic representation theory of the symmetric group and its applications in analysis, Transl. Math. Monogr., 219, 2003
[4] B. F. Logan, L. A. Shepp, “A variational problem for random Young tableaux”, Advances in Mathematics, 26:2 (1977), 206–222
[5] E. Thoma, “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe”, Mathematische Zeitschrift, 85 (1964), 40–61
[6] E. Thoma, “Über unitäre Darstellungen abzählbarer, diskreter Gruppen”, Mathematische Annalen, 153 (1964), 111–138
[7] S. Thomas, “Characters of inductive limits of finite alternating groups”, Ergodic Theory and Dynamical Systems, 40:4 (2020), 1068–1082
[8] A. M. Vershik, “Spectrum and absolute of the graph of two-row Young diagrams”, Zap. Nauchn. Semin. POMI, 517, 2022, 55–69
[9] A. M. Vershik, S. V. Kerov, “Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux”, Sov. Math., Dokl., 18 (1977), 527–531
[10] A. M. Vershik, S. V. Kerov, “Characters and factor representations of the infinite symmetric group”, Sov. Math., Dokl., 23 (1981), 389–392
[11] A. M. Vershik, S. V. Kerov, “Asymptotic theory of characters of the symmetric group”, Funct. Anal. Appl., 15 (1982), 246–255 \pagebreak
[12] A. M. Vershik, S. V. Kerov, “The Grothendieck group of infinite symmetric group and symmetric functions (with the elements of the theory of $K_ 0$-functor of AF-algebras)”, Representation of Lie groups and related topics, Adv. Stud. Contemp. Math., 7, 1990, 39–117