On Jordan structure of nilpotent matrices from Lie algebra $\mathfrak{so}(N,\mathbb{C})$
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 79-90
Cet article a éte moissonné depuis la source Math-Net.Ru
The Jordan structure of matrices of the Lie algebra of a complex orthogonal group, nilpotent case, is considered. These matrices have an arbitrarily complicated Jordan structure, under the known condition that the number of Jordan blocks of even size is even. A normal form for such matrices is proposed. Gram matrices of Jordan chains are described.
@article{ZNSL_2023_528_a4,
author = {M. V. Babich},
title = {On {Jordan} structure of nilpotent matrices from {Lie} algebra $\mathfrak{so}(N,\mathbb{C})$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {79--90},
year = {2023},
volume = {528},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a4/}
}
M. V. Babich. On Jordan structure of nilpotent matrices from Lie algebra $\mathfrak{so}(N,\mathbb{C})$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 79-90. http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a4/
[1] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966
[2] I. M. Gelfand i M. I. Naimark, “Unitarnye predstavleniya klassicheskikh grupp”, Tr. matem. instituta im. V. I. Steklova, 36, 1950
[3] M. V. Babich, “On birational Darboux coordinates on coadjoint orbits of classical complex Lie groups”, Zap. nauchn. semin. POMI, 432, 2014, 36–57
[4] M. V. Babich, “Diagrammy Yunga i stratifikatsiya prostranstva kvadratnykh kompleksnykh matrits”, Zap. nauchn. semin. POMI, 433, 2015, 41–64
[5] M. V. Babich, “Birational Darboux coordinates on nilpotent coadjoint orbits classical complex Lie groups, Jordan blocks $2\times 2$”, Zap. nauchn. semin. POMI, 465, 2017, 5–12