On Jordan structure of nilpotent matrices from Lie algebra $\mathfrak{so}(N,\mathbb{C})$
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 79-90
Voir la notice de l'article provenant de la source Math-Net.Ru
The Jordan structure of matrices of the Lie algebra of a complex orthogonal group, nilpotent case, is considered. These matrices have an arbitrarily complicated Jordan structure, under the known condition that the number of Jordan blocks of even size is even. A normal form for such matrices is proposed. Gram matrices of Jordan chains are described.
@article{ZNSL_2023_528_a4,
author = {M. V. Babich},
title = {On {Jordan} structure of nilpotent matrices from {Lie} algebra $\mathfrak{so}(N,\mathbb{C})$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {79--90},
publisher = {mathdoc},
volume = {528},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a4/}
}
M. V. Babich. On Jordan structure of nilpotent matrices from Lie algebra $\mathfrak{so}(N,\mathbb{C})$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 79-90. http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a4/