Reversible differential schemes for elliptical oscillators
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 54-78

Voir la notice de l'article provenant de la source Math-Net.Ru

For classical nonlinear oscillators, a comparison between the classical continuous theory of integration in elliptic functions and the discrete theory based on reversible difference schemes was made. These schemes are notable for the fact that the transition from layer to layer is described by Cremona transformations, which gives a large set of algebraic properties. Several properties are shown for the example of the Jacobi oscillator: 1). points of approximate trajectories fall on elliptic curves, 2). difference scheme can be written using quadrature, 3). the approximate solution is periodic. Explicit formulas to calculate the time step for which the approximate solution is a periodic sequence were found.
@article{ZNSL_2023_528_a3,
     author = {E. A. Ayryan and M. M. Gambaryan and M. D. Malykh and L. A. Sevastyanov},
     title = {Reversible differential schemes for elliptical oscillators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--78},
     publisher = {mathdoc},
     volume = {528},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a3/}
}
TY  - JOUR
AU  - E. A. Ayryan
AU  - M. M. Gambaryan
AU  - M. D. Malykh
AU  - L. A. Sevastyanov
TI  - Reversible differential schemes for elliptical oscillators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 54
EP  - 78
VL  - 528
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a3/
LA  - ru
ID  - ZNSL_2023_528_a3
ER  - 
%0 Journal Article
%A E. A. Ayryan
%A M. M. Gambaryan
%A M. D. Malykh
%A L. A. Sevastyanov
%T Reversible differential schemes for elliptical oscillators
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 54-78
%V 528
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a3/
%G ru
%F ZNSL_2023_528_a3
E. A. Ayryan; M. M. Gambaryan; M. D. Malykh; L. A. Sevastyanov. Reversible differential schemes for elliptical oscillators. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 54-78. http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a3/