Voir la notice du chapitre de livre
@article{ZNSL_2023_528_a3,
author = {E. A. Ayryan and M. M. Gambaryan and M. D. Malykh and L. A. Sevastyanov},
title = {Reversible differential schemes for elliptical oscillators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--78},
year = {2023},
volume = {528},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a3/}
}
TY - JOUR AU - E. A. Ayryan AU - M. M. Gambaryan AU - M. D. Malykh AU - L. A. Sevastyanov TI - Reversible differential schemes for elliptical oscillators JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 54 EP - 78 VL - 528 UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a3/ LA - ru ID - ZNSL_2023_528_a3 ER -
E. A. Ayryan; M. M. Gambaryan; M. D. Malykh; L. A. Sevastyanov. Reversible differential schemes for elliptical oscillators. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 54-78. http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a3/
[1] V. V. Golubev, Lektsii po integrirovaniyu uravnenii dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki, GTTI, M., 1953
[2] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, URSS, M., 2021
[3] N. A. Kudryashov, Analiticheskaya teoriya nelineinykh differentsialnykh uravnenii, MIFI, M., 2002
[4] A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, A. S. Fokas, Transtsendenty Penleve. Metod zadachi Rimana, IKI, R Dynamics, M.–Izhevsk, 2005
[5] P. Painlevé, Lecons sur la theorie analytique des equations differentielles, v. 1, {ØE}uvres de Paul Painlevé, 1971
[6] H. Umemura, “Birational automorphism groups and differential equations”, Nagoya Math. J., 119 (1990), 1–80
[7] M. D. Malykh, “O transtsendentnykh funktsiyakh, voznikayuschikh pri integrirovanii differentsialnykh uravnenii v konechnom vide”, Zap. nauchn. semin. POMI, 432, 2015, 196–223
[8] F. W. J. Olver, NIST Digital Library of Mathematical Functions, , 2022 (accessed: 2023-01-30) https://dlmf.nist.gov
[9] Ali Baddur, M. D. Malykh, L. A. Sevastyanov, “O periodicheskikh priblizhennykh resheniyakh dinamicheskikh sistem s kvadratichnoi pravoi chastyu”, Zap. nauchn. semin. POMI, 507, 2021, 157–172
[10] A. P. Veselov, “Gruppa Kremony i dinamicheskie sistemy”, Matem. zametki, 45:3 (1989), 118–120
[11] Yu. Mozer, Lektsii o gamiltonovykh sistemakh, Mir, M., 1973
[12] E. A. Airyan, M. M. Gambaryan, M. D. Malykh, L. A. Sevastyanov, “O traektoriyakh dinamicheskikh sistem s kvadratichnoi pravoi chastyu, vychislennykh po obratimym raznostnym skhemam”, Zap. nauchn. semin. POMI, 517, 2022, 17–35
[13] P. Painlevé, “Memoire sur les equations differentielles du primier ordre”, {ØE}uvres de Paul Painlevé, 2, 1974, 237–461
[14] Tanush Shaska, “Determining the Automorphism Group of a Hyperelliptic Curve”, Proceedings of the 2003 international symposium on Symbolic and algebraic computation, 2003, 248–254
[15] M. D. Malykh, L. A. Sevastyanov, “O vychislenii gruppy avtomorfizmov giperellipticheskikh krivykh”, Zap. nauchn. semin. POMI, 485, 2019, 140–154
[16] F. Severi, Lezioni di geometria algebrica, Angelo Graghi, Padova, 1908
[17] F. Enriques, Le superficie algebriche, Zanichelli, 1949
[18] A. Gurvits, R. Kurant, Teoriya funktsii, Nauka, M., 1968
[19] Yu. S. Sikorskii, Elementy teorii ellipticheskikh funktsii s prilozheniyami k mekhanike, ONTI, M.–L., 1936
[20] F. Klein, Lektsii o razvitii matematiki v XIX stoletii, v. 1, ONTI, M.–L., 1937
[21] E. Hairer, G. Wanner, Ch. Lubich, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, Berlin–Heidelberg–New York, 2000
[22] W. A. Stein and others, Sage Mathematics Software (Version 9.6), 2022 http://www.sagemath.org