Reversible differential schemes for elliptical oscillators
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 54-78
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For classical nonlinear oscillators, a comparison between the classical continuous theory of integration in elliptic functions and the discrete theory based on reversible difference schemes was made. These schemes are notable for the fact that the transition from layer to layer is described by Cremona transformations, which gives a large set of algebraic properties. Several properties are shown for the example of the Jacobi oscillator: 1). points of approximate trajectories fall on elliptic curves, 2). difference scheme can be written using quadrature, 3). the approximate solution is periodic. Explicit formulas to calculate the time step for which the approximate solution is a periodic sequence were found.
@article{ZNSL_2023_528_a3,
     author = {E. A. Ayryan and M. M. Gambaryan and M. D. Malykh and L. A. Sevastyanov},
     title = {Reversible differential schemes for elliptical oscillators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--78},
     year = {2023},
     volume = {528},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a3/}
}
TY  - JOUR
AU  - E. A. Ayryan
AU  - M. M. Gambaryan
AU  - M. D. Malykh
AU  - L. A. Sevastyanov
TI  - Reversible differential schemes for elliptical oscillators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 54
EP  - 78
VL  - 528
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a3/
LA  - ru
ID  - ZNSL_2023_528_a3
ER  - 
%0 Journal Article
%A E. A. Ayryan
%A M. M. Gambaryan
%A M. D. Malykh
%A L. A. Sevastyanov
%T Reversible differential schemes for elliptical oscillators
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 54-78
%V 528
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a3/
%G ru
%F ZNSL_2023_528_a3
E. A. Ayryan; M. M. Gambaryan; M. D. Malykh; L. A. Sevastyanov. Reversible differential schemes for elliptical oscillators. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 54-78. http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a3/

[1] V. V. Golubev, Lektsii po integrirovaniyu uravnenii dvizheniya tyazhelogo tverdogo tela okolo nepodvizhnoi tochki, GTTI, M., 1953

[2] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, URSS, M., 2021

[3] N. A. Kudryashov, Analiticheskaya teoriya nelineinykh differentsialnykh uravnenii, MIFI, M., 2002

[4] A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, A. S. Fokas, Transtsendenty Penleve. Metod zadachi Rimana, IKI, R Dynamics, M.–Izhevsk, 2005

[5] P. Painlevé, Lecons sur la theorie analytique des equations differentielles, v. 1, {ØE}uvres de Paul Painlevé, 1971

[6] H. Umemura, “Birational automorphism groups and differential equations”, Nagoya Math. J., 119 (1990), 1–80

[7] M. D. Malykh, “O transtsendentnykh funktsiyakh, voznikayuschikh pri integrirovanii differentsialnykh uravnenii v konechnom vide”, Zap. nauchn. semin. POMI, 432, 2015, 196–223

[8] F. W. J. Olver, NIST Digital Library of Mathematical Functions, , 2022 (accessed: 2023-01-30) https://dlmf.nist.gov

[9] Ali Baddur, M. D. Malykh, L. A. Sevastyanov, “O periodicheskikh priblizhennykh resheniyakh dinamicheskikh sistem s kvadratichnoi pravoi chastyu”, Zap. nauchn. semin. POMI, 507, 2021, 157–172

[10] A. P. Veselov, “Gruppa Kremony i dinamicheskie sistemy”, Matem. zametki, 45:3 (1989), 118–120

[11] Yu. Mozer, Lektsii o gamiltonovykh sistemakh, Mir, M., 1973

[12] E. A. Airyan, M. M. Gambaryan, M. D. Malykh, L. A. Sevastyanov, “O traektoriyakh dinamicheskikh sistem s kvadratichnoi pravoi chastyu, vychislennykh po obratimym raznostnym skhemam”, Zap. nauchn. semin. POMI, 517, 2022, 17–35

[13] P. Painlevé, “Memoire sur les equations differentielles du primier ordre”, {ØE}uvres de Paul Painlevé, 2, 1974, 237–461

[14] Tanush Shaska, “Determining the Automorphism Group of a Hyperelliptic Curve”, Proceedings of the 2003 international symposium on Symbolic and algebraic computation, 2003, 248–254

[15] M. D. Malykh, L. A. Sevastyanov, “O vychislenii gruppy avtomorfizmov giperellipticheskikh krivykh”, Zap. nauchn. semin. POMI, 485, 2019, 140–154

[16] F. Severi, Lezioni di geometria algebrica, Angelo Graghi, Padova, 1908

[17] F. Enriques, Le superficie algebriche, Zanichelli, 1949

[18] A. Gurvits, R. Kurant, Teoriya funktsii, Nauka, M., 1968

[19] Yu. S. Sikorskii, Elementy teorii ellipticheskikh funktsii s prilozheniyami k mekhanike, ONTI, M.–L., 1936

[20] F. Klein, Lektsii o razvitii matematiki v XIX stoletii, v. 1, ONTI, M.–L., 1937

[21] E. Hairer, G. Wanner, Ch. Lubich, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, Berlin–Heidelberg–New York, 2000

[22] W. A. Stein and others, Sage Mathematics Software (Version 9.6), 2022 http://www.sagemath.org