Reversible differential schemes for elliptical oscillators
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 54-78
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For classical nonlinear oscillators, a comparison between the classical continuous theory of integration in elliptic functions and the discrete theory based on reversible difference schemes was made. These schemes are notable for the fact that the transition from layer to layer is described by Cremona transformations, which gives a large set of algebraic properties. Several properties are shown for the example of the Jacobi oscillator: 1). points of approximate trajectories fall on elliptic curves, 2). difference scheme can be written using quadrature, 3). the approximate solution is periodic. Explicit formulas to calculate the time step for which the approximate solution is a periodic sequence were found.
			
            
            
            
          
        
      @article{ZNSL_2023_528_a3,
     author = {E. A. Ayryan and M. M. Gambaryan and M. D. Malykh and L. A. Sevastyanov},
     title = {Reversible differential schemes for elliptical oscillators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--78},
     publisher = {mathdoc},
     volume = {528},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a3/}
}
                      
                      
                    TY - JOUR AU - E. A. Ayryan AU - M. M. Gambaryan AU - M. D. Malykh AU - L. A. Sevastyanov TI - Reversible differential schemes for elliptical oscillators JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 54 EP - 78 VL - 528 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a3/ LA - ru ID - ZNSL_2023_528_a3 ER -
%0 Journal Article %A E. A. Ayryan %A M. M. Gambaryan %A M. D. Malykh %A L. A. Sevastyanov %T Reversible differential schemes for elliptical oscillators %J Zapiski Nauchnykh Seminarov POMI %D 2023 %P 54-78 %V 528 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a3/ %G ru %F ZNSL_2023_528_a3
E. A. Ayryan; M. M. Gambaryan; M. D. Malykh; L. A. Sevastyanov. Reversible differential schemes for elliptical oscillators. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 54-78. http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a3/
