@article{ZNSL_2023_528_a13,
author = {A. Khvedelidze and A. Torosyan},
title = {On the hierarchy of classicality and symmetry of quantum states},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {238--260},
year = {2023},
volume = {528},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a13/}
}
A. Khvedelidze; A. Torosyan. On the hierarchy of classicality and symmetry of quantum states. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 238-260. http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a13/
[1] V. Abgaryan, A. Khvedelidze, “On families of Wigner functions for $N$-level quantum systems”, Symmetry, 13:6 (2021), 1013
[2] V. Abgaryan, A. Khvedelidze, A. Torosyan, “On the moduli space of Wigner quasiprobability distributions for N-dimensional quantum systems”, J. Math. Sci., 240 (2019), 617–633
[3] L. Michel, B. I. Zhilinskii, “Symmetry, invariants, and topology. I. Basic tools”, Phys. Rep., 341 (2001), 11–84
[4] V. Abgaryan, A. Khvedelidze, A. Torosyan, “The global indicator of classicality of an arbitrary N-Level quantum system”, J. Math. Sci., 251 (2020), 301–314
[5] N. Abbasli, V. Abgaryan, M. Bures, A. Khvedelidze, I. Rogojin, A. Torosyan, “On measures of classicality/quantumness in quasiprobability representations of finite-dimensional quantum systems”, Phys. Part. Nuclei, 51 (2020), 443–447
[6] M. E. Dyer, A. M. Frieze, “On the complexity of computing the volume of a polyhedron”, SIAM J. Comput., 17:5 (1988), 967–974
[7] J. B. Lasserre, K. E. Avrachenkov, “The multi-dimensional version of $\int\limits_a^b x^p\mathrm{d}x$”, Amer. Math. Mon., 108 (2001), 151–154
[8] J. B. Lasserre, “Simple formula for integration of polynomials on a simplex”, BIT Numerical Mathematics, 61 (2021), 523–533