On the hierarchy of classicality and symmetry of quantum states
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 238-260

Voir la notice de l'article provenant de la source Math-Net.Ru

The interrelation between classicality/quantumness and symmetry of states is discussed within the phase-space formulation of finite-dimensional quantum systems. We derive representations for classicality measures $\mathcal{Q}_N[H_{\varrho}]$ of states from the stratum of given symmetry type $[H_{\varrho}]$ for the Hilbert–Schmidt ensemble of qudits. The expressions for measures are given in terms of the permanents of matrices constructed from the vertices of the special Wigner function's positivity polytope. The supposition about the partial order of classicality indicators $\mathcal{Q}_N[H_{\varrho}]$ in accordance with the symmetry type of stratum is formulated.
@article{ZNSL_2023_528_a13,
     author = {A. Khvedelidze and A. Torosyan},
     title = {On the hierarchy of classicality and symmetry of quantum states},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {238--260},
     publisher = {mathdoc},
     volume = {528},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a13/}
}
TY  - JOUR
AU  - A. Khvedelidze
AU  - A. Torosyan
TI  - On the hierarchy of classicality and symmetry of quantum states
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 238
EP  - 260
VL  - 528
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a13/
LA  - en
ID  - ZNSL_2023_528_a13
ER  - 
%0 Journal Article
%A A. Khvedelidze
%A A. Torosyan
%T On the hierarchy of classicality and symmetry of quantum states
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 238-260
%V 528
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a13/
%G en
%F ZNSL_2023_528_a13
A. Khvedelidze; A. Torosyan. On the hierarchy of classicality and symmetry of quantum states. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 238-260. http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a13/