@article{ZNSL_2023_528_a12,
author = {A. Tiskin},
title = {The {Chv\'atal{\textendash}Sankoff} problem as a problem of symbolic dynamics},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {214--237},
year = {2023},
volume = {528},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a12/}
}
A. Tiskin. The Chvátal–Sankoff problem as a problem of symbolic dynamics. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 214-237. http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a12/
[1] A. Abboud, A. Backurs, V. Vassilevska Williams, “Tight hardness results for LCS and other sequence similarity measures”, Proceedings of FOCS, 2015, 59–78
[2] K. S. Alexander, “The rate of convergence of the mean length of the longest common subsequence”, Annal. Appl. Probab., 4:4 (1994), 1074–1082
[3] C. E. R. Alves, E. N. Cáceres, S. W. Song, “An all-substrings common subsequence algorithm”, Discrete Appl. Math., 156:7 (2008), 1025–1035
[4] R. A. Baeza-Yates, R. Gavaldà, G. Navarro, R. Scheihing, “Bounding the expected length of longest common subsequences and forests”, Theory of Computing Systems, 32:4 (1999), 435–452
[5] K. E. Batcher, “Sorting networks and their applications”, Proceedings of AFIPS, 32 (1968), 307–314
[6] A. Borodin, I. Corwin, V. Gorin, “Stochastic six-vertex model”, Duke Math. J., 165:3 (2016), 563–624
[7] K. Bringmann, M. Künnemann, “Multivariate fine-grained complexity of longest common subsequence”, Proceedings of ACM-SIAM SODA, 2018, 1216–1235
[8] B. Bukh, C. Cox, “Periodic words, common subsequences and frogs”, Annals Appl. Probab., 32:2 (2022), 1295–1332
[9] B. Bukh, V. Guruswami, J. Hastad, “An improved bound on the fraction of correctable deletions”, IEEE Transactions on Information Theory, 63:1 (2017), 93–103
[10] R. Bundschuh, “High precision simulations of the longest common subsequence problem”, European Phys. J. B, 22:4 (2001), 533–541
[11] J. Casse, “Probabilistic cellular automata with general alphabets possessing a Markov chain as an invariant distribution”, Adv. Appl. Probab., 48:2 (2016), 369–391
[12] P. Charalampopoulos, P. Gawrychowski, S. Mozes, O. Weimann, “An Almost Optimal Edit Distance Oracle”, Proceedings of ICALP, Leibniz International Proceedings in Informatics, 198, 2021, 48:1–48:20
[13] P. Charalampopoulos, T. Kociumaka, Sh. Mozes, “Dynamic string alignment”, Proceedings of CPM, LIPIcs, 161, 2020, 9:1–9:13
[14] V. Chvátal, D. Sankoff, “Longest common subsequences of two random sequences”, J. Appl. Probab., 12:2 (1975), 306–315
[15] M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, J. F. Reid, “A fast and practical bit-vector algorithm for the Longest Common Subsequence problem”, Inform. Proc. Letters, 80 (2001), 279–285
[16] M. Crochemore, G. M. Landau, M. Ziv-Ukelson, “A subquadratic sequence alignment algorithm for unrestricted score matrices”, SIAM J. Comput., 32 (2003), 1654–1673
[17] V. Dančík, Expected Length of Longest Common Subsequences, PhD thesis, University of Warwick, 1994
[18] J. Boutet De Monvel, “Extensive simulations for longest common subsequences: Finite size scaling, a cavity solution, and configuration space properties”, Europ. Phys. J. B, 7:2 (1999), 293–308
[19] J. G. Deken, “Some limit results for longest common subsequences”, Discrete Math., 26:1 (1979), 17–31
[20] Pablo A. Ferrari, “TASEP hydrodynamics using microscopic characteristics”, Probab. Surveys, 15 (2018), 1–27
[21] P. Gawrychowski, “Faster algorithm for computing the edit distance between SLP-compressed strings”, Proceedings of SPIRE, Lecture Notes in Computer Science, 7608, 229–236
[22] D. Hermelin, G. M. Landau, S. Landau, O. Weimann, “Unified Compression-Based Acceleration of Edit-Distance Computation”, Algorithmica, 65:2 (2013), 339–353
[23] H. Hyyr{ö}, “Mining bit-parallel LCS-length algorithms”, Proceedings of SPIRE, Lecture Notes in Computer Science, 10508, 2017, 214–220
[24] D. E. Knuth, The Art of Computer Programming: Sorting and Searching, v. 3, Addison Wesley, 1998
[25] T. Kriecherbauer, J. Krug, “A pedestrian's view on interacting particle systems, KPZ universality and random matrices”, J. Phys. A: Math. Theor., 43:40 (2010), 403001
[26] P. Krusche, A. Tiskin, “String comparison by transposition networks”, London Algorithmics 2008 Theory and Practice, Texts in Algorithmics, 11, College Publications, 2009
[27] G. S. Lueker, “Improved bounds on the average length of longest common subsequences”, J. ACM, 56:3 (2009), 17:1–17:38
[28] D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding, second edition, Cambridge University Press, 2021
[29] B. F. Logan, L. A. Shepp, “A variational problem for random Young tableaux”, Adv. Math., 26:2 (1977), 206–222
[30] J. Mairesse, I. Marcovici, “Around probabilistic cellular automata”, Theor. Computer Sci., 559 (2014), 42–72
[31] S. N. Majumdar, S. Nechaev, “Exact asymptotic results for the Bernoulli matching model of sequence alignment”, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 72:2 (2005), 020901
[32] J. Martin, P. Schmidt, “Multi-type TASEP in discrete time”, Latin Amer. J. Probab. Math. Statist., 8 (2011), 303–333
[33] W. J. Masek, M. S. Paterson, “A faster algorithm computing string edit distances”, J. Comput. System Sci., 20:1 (1980), 18–31
[34] U. Matarazzo, D. Tsur, M. Ziv-Ukelson, “Efficient all path score computations on grid graphs”, Theor Comput. Sci., 525 (2014), 138–149
[35] M. Paterson, V. Dančík, “Longest common subsequences”, Proceedings of MFCS, Lecture Notes in Computer Science, 841, 1994, 127–142
[36] K Petersen, A Quas, S Shin, “Measures of maximal relative entropy”, Ergodic Theory and Dynamical Systems, 23:1 (2003)
[37] P. A. Pevzner, M. S. Waterman, “Open combinatorial problems in computational molecular biology”, Proceedings of ISTCS, 1995, 158–173
[38] V. B. Priezzhev, G. M. Sch{ü}tz, “Exact solution of the Bernoulli matching model of sequence alignment”, J. Statist. Mech.: Theory and Experiment, 09 (2008), P09007
[39] N. Rajewsky, L. Santen, A. Schadschneider, M. Schreckenberg, “The asymmetric exclusion process: comparison of update procedures”, J. Statist. Phys., 92 (1998), 151–194
[40] D. Romik, The Surprising Mathematics of Longest Increasing Subsequences, Cambridge University Press, Cambridge, 2014
[41] H. Rost, “Non-equilibrium behaviour of a many particle process: Density profile and local equilibria”, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 58:1 (1981), 41–53
[42] Y. Sakai, “A substring–substring LCS data structure”, Theor. Comput. Sci., 753:2 (2019), 16–34
[43] Y. Sakai, “A fast algorithm for multiplying min-sum permutations”, Discrete Appl. Math., 159 (2011), 2175–2183
[44] S. Salsa, Partial Differential Equations in Action, UNITEXT, 99, Springer International Publishing, 2016
[45] J. P. Schmidt, “All highest scoring paths in weighted grid graphs and their application to finding all approximate repeats in strings”, SIAM J. Comput., 27:4 (1998), 972–992
[46] J. M. Steele, “An Efron-Stein inequality for nonsymmetric statistics”, Annals Statist., 14:2 (1986), 753–758
[47] A. Tiskin, “The Chvátal–Sankoff problem: Understanding random string comparison through stochastic processes”, Zap. Nauchn. Semin. POMI, 517, 2022, 191–224
[48] A. Tiskin, “Semi-local longest common subsequences in subquadratic time”, J. Disc. Algorithms, 6:4 (2008), 570–581
[49] A. Tiskin, “Periodic String Comparison”, Proceedings of CPM, Lecture Notes in Computer Science, 5577, 2009, 193–206
[50] A. Tiskin, “Towards Approximate Matching in Compressed Strings: Local Subsequence Recognition”, Proceedings of CSR, Lecture Notes in Computer Science, 6651, 2011, 401–414
[51] A. Tiskin, “Fast Distance Multiplication of Unit-Monge Matrices”, Algorithmica, 71 (2015), 859–888
[52] A. Tiskin, “Bounded-Length Smith–Waterman Alignment”, Proceedings of WABI, Leibniz International Proceedings in Informatics, 143, 2019, 16:1–16:12
[53] J. M. Steele, Probability Theory and Combinatorial Optimization, CBMS-NSF regional conference series in applied mathematics, 69, SIAM, 1997
[54] A. Tiskin, “Semi-local string comparison: Algorithmic techniques and applications”, Math. Comput. Sci., 1:4 (2008), 571–603
[55] A. Tiskin, “Communication vs synchronisation in parallel string comparison”, Proceedings of SPAA, 2020, 479–489
[56] A. M. Vershik, S. V. Kerov, “Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux”, Dokl. Akad. Nauk, 233:6 (1977), 1024–1027
[57] R. A. Wagner, M. J. Fischer, “The string-to-string correction problem”, J. ACM, 21:1 (1974), 168–173