The comments to the article by Elmar Thoma: ``Die unzerlegbaren, positiv-definiten Klassenfunktionen der abz \"ahlbar unendlichen, symmetrischen Gruppe''
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 37-46

Voir la notice de l'article provenant de la source Math-Net.Ru

We comment here the classical article by Elmar Thoma abour caracters of the infinite symmetric group; consider the proof of the main result , which compare with the following papers of different authors who suggested various approves to the theory of the characters and representations of that group as well as related groups.
@article{ZNSL_2023_528_a1,
     author = {A. M. Vershik},
     title = {The comments to the article by {Elmar} {Thoma:} {``Die} unzerlegbaren, positiv-definiten {Klassenfunktionen} der abz \"ahlbar unendlichen, symmetrischen {Gruppe''}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {37--46},
     publisher = {mathdoc},
     volume = {528},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a1/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - The comments to the article by Elmar Thoma: ``Die unzerlegbaren, positiv-definiten Klassenfunktionen der abz \"ahlbar unendlichen, symmetrischen Gruppe''
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 37
EP  - 46
VL  - 528
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a1/
LA  - ru
ID  - ZNSL_2023_528_a1
ER  - 
%0 Journal Article
%A A. M. Vershik
%T The comments to the article by Elmar Thoma: ``Die unzerlegbaren, positiv-definiten Klassenfunktionen der abz \"ahlbar unendlichen, symmetrischen Gruppe''
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 37-46
%V 528
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a1/
%G ru
%F ZNSL_2023_528_a1
A. M. Vershik. The comments to the article by Elmar Thoma: ``Die unzerlegbaren, positiv-definiten Klassenfunktionen der abz \"ahlbar unendlichen, symmetrischen Gruppe''. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Tome 528 (2023), pp. 37-46. http://geodesic.mathdoc.fr/item/ZNSL_2023_528_a1/