@article{ZNSL_2023_527_a7,
author = {O. V. Silvanovich and N. A. Shirokov},
title = {B.~Ya.~Levin function for some sets of segments},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {183--203},
year = {2023},
volume = {527},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a7/}
}
O. V. Silvanovich; N. A. Shirokov. B. Ya. Levin function for some sets of segments. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 183-203. http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a7/
[1] B. Ya. Levin, “Mazhoranty v klassakh subgarmonicheskikh funktsii I”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 51 (1989), 3–17
[2] B. Ya. Levin, “Mazhoranty v klassakh subgarmonicheskikh funktsii II”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 52 (1989), 3–33
[3] V. A. Marchenko, I. V. Ostrovskii, “Kharakteristika spektra operatora Khilla”, Matem. sbornik, 97:4 (1975), 540–606
[4] P. Kargaev, E. Korotyaev, “Effective masses and conformal mappings”, Comm. Math. Phys., 169:3 (1995), 597–625
[5] E. L. Korotyaev, “Rasprostranenie voln v odnomernoi neodnorodnoi srede”, Dokl. RAN, 336:2 (1994), 171–174
[6] O. V. Silvanovich, N. A. Shirokov, “Approximation by entire functions on a countable union of segments of the real axis”, Vestnik St. Petersburg Univ., Mathematics, 49:4 (2016), 373–376
[7] O. V. Silvanovich, N. A. Shirokov, “Approximation by entire functions on a countable union of segments of the real axis. 3. Futher generalization”, Vestnik St. Petersburg Univ., Mathematics, 51:2 (2018), 164–168
[8] O. V. Silvanovich, N. A. Shirokov, “Approximation by entire functions in a countable union of segments of the real axis. $4$. Inverse theorem”, Vestnik St. Petersburg Univ., Mathematics, 51:3 (2018), 267–275