Variations of the Bourgain method for $\mathrm{K}$-closedness of certain subcouples
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 155-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the early nineties J. Bourgain proved that the couple $(\mathrm{L}_ {1}^P, \mathrm{L}_ {p}^P)$ is $\mathrm{K}$-closed in $(\mathrm{L}_ {1}, \mathrm{L}_ {p})$, $1 < p < \infty$, where the subspaces $\mathrm{L}_ {q}^P$ of $\mathrm{L}_ {q}$ are defined by $\{P f = f\}$ with a projection $P$ that is a Calderón–Zygmund operator. $\mathrm{K}$-closedness means that arbitrary measurable decompositions in $\mathrm{L}_ {1} + \mathrm{L}_ {p}$ of functions from $\mathrm{L}_ {1}^P + \mathrm{L}_ {p}^P$ can be replaced by decompositions in $\mathrm{L}_ {1}^P + \mathrm{L}_ {p}^P$ with suitable norm estimates. In the present work we consider some variations of J. Bourgain's argument that natually lead to many of its known generalizations. To illustrate this, we prove the following generalization of a result by S. V. Kislyakov and Q. Xu about $\mathrm{K}$-closedness of Hardy spaces on the bidisk: spaces of functions on $\mathbb R^2$ with Fourier transform supported on an arbitrary finite union of polygons are $\mathrm{K}$-closed in $(\mathrm{L}_ {1}, \mathrm{L}_ {\infty})$. On the other hand, some counterexamples reveal certain hard limitations of such methods if one tries to apply them in higher dimensions and to more complicated spaces of functions on the line and on the plane. Among other things, we show how a recent result by S. V. Kislyakov and I. K. Zlotnikov about $\mathrm{K}$-closedness of the coinvariant subspaces of the shift operator ${\mathcal K}_\theta^p$ can be derived directly from J. Bourgain's original result to achieve $\mathrm{K}$-closedness of the entire scale $(\mathcal K^{1}_\theta, \mathcal K_\theta^{\infty})$.
@article{ZNSL_2023_527_a6,
     author = {D. V. Rutsky},
     title = {Variations of the {Bourgain} method for $\mathrm{K}$-closedness of certain subcouples},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {155--182},
     year = {2023},
     volume = {527},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a6/}
}
TY  - JOUR
AU  - D. V. Rutsky
TI  - Variations of the Bourgain method for $\mathrm{K}$-closedness of certain subcouples
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 155
EP  - 182
VL  - 527
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a6/
LA  - ru
ID  - ZNSL_2023_527_a6
ER  - 
%0 Journal Article
%A D. V. Rutsky
%T Variations of the Bourgain method for $\mathrm{K}$-closedness of certain subcouples
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 155-182
%V 527
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a6/
%G ru
%F ZNSL_2023_527_a6
D. V. Rutsky. Variations of the Bourgain method for $\mathrm{K}$-closedness of certain subcouples. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 155-182. http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a6/

[1] A. B. Aleksandrov, Essays on non locally convex Hardy classes, Lect. Notes Math., 864, 1981, 89 pp.

[2] N. Asmar, E. Berkson, J. Bourgain, “Restrictions from $\mathbb R^n$ to $\mathbb Z^n$ of weak type $(1, 1)$ multipliers”, Studia Math., 108 (1994), 291–299

[3] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Inc., Boston, MA, 1988

[4] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, 1976

[5] J. Bourgain, “Some consequences of Pisier's approach to interpolation”, Isr. J. Math., 77 (1992), 165–185

[6] R. Fefferman, F. Soria, “The space weak $H^1$”, Studia Math., 85 (1986), 1–16

[7] G. B. Folland and E. M. Stein, Hardy spaces on homogeneous groups, Princeton Univ. Press, 1982

[8] S. Janson, “Interpolation of subcouples and quotient couples”, Ark. Mat., 31 (1993), 307–338

[9] P. W. Jones, “$L^\infty$ estimates of the $\bar \partial$-problem in a half-plane”, Acta Math., 150 (1983), 138–152

[10] S. V. Kisliakov, “Interpolation of $H_p$-spaces: some recent developments”, Israel Math. Conf., 13 (1999), 102–140

[11] S. V. Kislyakov, “Fourier coefficients of continuous functions and a class of multipliers”, Ann. Inst. Fourier (Grenoble), 38 (1988), 147–183

[12] S. V. Kislyakov, “A sharp correction theorem”, Studia Math., 113 (1995), 177–196

[13] S. V. Kislyakov, “Interpolation involving bounded bianalytic functions”, Operator Theory: Advances and Applications, 113 (2000), 135–149

[14] S. V. Kislyakov, I. K. Zlotnikov, “Coinvariant subspaces of the shift operator and interpolation”, Anal. Math., 44 (2018), 219–236

[15] J. Peetre, “Interpolation functors and Banach couples”, Actes Congrès Intern. Math., 2 (1970), 373–378

[16] G. Pisier, “Interpolation between $H^p$ spaces and noncommutative generalizations. I”, Pacific J. Math., 155 (1992), 341–368

[17] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993

[18] J.-O. Strömberg, A. Torchinsky, Weighted Hardy Spaces, Springer-Verlag, 1989

[19] T. Wolff, “A note on interpolation spaces”, Lect. Notes Math., 908, 1981, 199–204

[20] Quan Hua Xu, “Some properties of the quotient space $L^1 (\mathbb T^n) / H^1 (\mathbb T^n)$”, Illinois J. Math., 37:3 (1993), 437–454

[21] D. S. Anisimov, C. V. Kislyakov, “Dvoinye singulyarnye integraly: interpolyatsiya i ispravlenie”, Algebra i Analiz, 16:5 (2004), 1–33

[22] V. A. Borovitskii, “K-zamknutost dlya vesovykh prostranstv Khardi na tore $\mathbb T^2$”, Zap. nauchn. semin. POMI, 456, 2017, 25–36

[23] S. V. Kislyakov, “Koeffitsienty Fure granichnykh znachenii funktsii, analiticheskikh v kruge i v bidiske”, Tr. MIAN SSSR, 155, 1981, 77–94

[24] S. V. Kislyakov, K. Shu, “Veschestvennaya interpolyatsiya i singulyarnye integraly”, Algebra i Analiz, 8:4 (1996), 75–109