@article{ZNSL_2023_527_a4,
author = {A. A. Lunev and M. M. Malamud},
title = {On an asymptotic expansion of the characteristic determinant for $2 \times 2$ {Dirac} type systems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {94--136},
year = {2023},
volume = {527},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a4/}
}
TY - JOUR AU - A. A. Lunev AU - M. M. Malamud TI - On an asymptotic expansion of the characteristic determinant for $2 \times 2$ Dirac type systems JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 94 EP - 136 VL - 527 UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a4/ LA - ru ID - ZNSL_2023_527_a4 ER -
A. A. Lunev; M. M. Malamud. On an asymptotic expansion of the characteristic determinant for $2 \times 2$ Dirac type systems. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 94-136. http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a4/
[1] A. V. Agibalova, M. M. Malamud, and L. L. Oridoroga, “On the completeness of general boundary value problems for $2 \times 2$ first-order systems of ordinary differential equations”, Methods of Functional Analysis and Topology, 18:1 (2012), 4–18
[2] G. D. Birkhoff and R. E. Langer, “The boundary problems and developments associated with a system of ordinary differential equations of the first order”, Proc. Amer. Acad. Arts Sci., 58 (1923), 49–128
[3] P. Djakov and B. Mityagin, “Bari–Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283:3 (2010), 443–462
[4] P. Djakov and B. Mityagin, “Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators”, J. Funct. Anal., 263:8 (2012), 2300–2332
[5] P. Djakov and B. Mityagin, “Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions”, Indiana Univ. Math. J., 61:1 (2012), 359–398
[6] Yu. P. Ginzburg, “The almost invariant spectral propeties of contractions and the multiplicative properties of analytic operator-functions”, Funct. Anal. Appl., 5:3 (1971), 197–205
[7] A. M. Gomilko and L. Rzepnicki, “On asymptotic behaviour of solutions of the Dirac system and applications to the Sturm-Liouville problem with a singular potential”, Journal of Spectral Theory, 10:3 (2020), 747–786
[8] A. P. Kosarev and A. A. Shkalikov, “Spectral asymptotics of solutions of a $2 \times 2$ system of first-order ordinary differential equations”, Math. Notes, 110:5–6 (2021), 967–971
[9] A. P. Kosarev and A. A. Shkalikov, Spectral asymptotics for solutions of $2 \times 2$ system of ordinary differential equations of the first order, arXiv: 2212.06227
[10] V. M. Kurbanov and A. M. Abdullayeva, “Bessel property and basicity of the system of root vector-functions of Dirac operator with summable coefficient”, Operators and Matrices, 12:4 (2018), 943–954
[11] A. A. Lunyov and M. M. Malamud, “On the completeness of root vectors for first-order systems: application to the Regge problem”, Dokl. Math., 88:3 (2013), 678–683
[12] A. A. Lunyov and M. M. Malamud, “On spectral synthesis for dissipative Dirac type operators”, Integr. Equ. Oper. Theory, 90 (2014), 79–106
[13] A. A. Lunyov and M. M. Malamud, “On the Riesz basis property of the root vector system for Dirac-type $2 \times 2$ systems”, Dokl. Math., 90:2 (2014), 556–561
[14] A. A. Lunyov and M. M. Malamud, “On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications”, J. Spectral Theory, 5:1 (2015), 17–70
[15] A. A. Lunyov and M. M. Malamud, “On the Riesz basis property of root vectors system for $2 \times 2$ Dirac type operators”, J. Math. Anal. Appl., 441 (2016), 57–103
[16] A. A. Lunyov and M. M. Malamud, On transformation operators and Riesz basis property of root vectors system for $n \times n$ Dirac type operators. Application to the Timoshenko beam model, arXiv: 2112.07248
[17] A. A. Lunyov and M. M. Malamud, “Stability of spectral characteristics of boundary value problems for $2 \times 2$ Dirac type systems. Applications to the damped string”, J. Differential Equations, 313 (2022), 633–742
[18] A. Lunev, M. Malamud, “On characteristic determinants of boundary value problems for Dirac type systems”, Zap. Nauchn. Sem. POMI, 516, 2022, 69–120
[19] A. S. Makin, “On the completeness of the system of root functions of the Sturm–Liouville operator with degenerate boundary conditions”, Differ. Equ., 50:6 (2014), 835–839
[20] A. S. Makin, “Regular boundary value problems for the Dirac operator”, Doklady Mathematics, 101:3 (2020), 214–217
[21] A. S. Makin, “On the spectrum of two-point boundary value problems for the Dirac operator”, Differ. Equ., 57:8 (2021), 993–1002
[22] A. S. Makin, “On convergence of spectral expansions of Dirac operators with regular boundary conditions”, Math. Nachr., 295:1 (2022), 189–210
[23] A. S. Makin, On the completeness of root function system of the Dirac operator with two-point boundary conditions, arXiv: 2304.06108
[24] M. M. Malamud, “Similarity of Volterra operators and related questions of the theory of differential equations of fractional order”, Trans. Moscow Math. Soc., 55 (1994), 57–122
[25] M. M. Malamud, “On the completeness of a system of root vectors of the Sturm-Liouville operator with general boundary conditions”, Funct. Anal. Appl., 42:3 (2008), 198–204
[26] M. M. Malamud and L. L. Oridoroga, “Completeness theorems for systems of differential equations”, Funct. Anal. Appl., 34:4 (2000), 308–310
[27] M. M. Malamud and L. L. Oridoroga, “On the completeness of the system of root vectors for second-order systems”, Dokl. Math., 82:3 (2010), 899–904
[28] M. M. Malamud and L. L. Oridoroga, “On the completeness of root subspaces of boundary value problems for first order systems of ordinary differential equations”, J. Funct. Anal., 263 (2012), 1939–1980
[29] V. A. Marchenko, Sturm–Liouville operators and applications, Operator Theory: Advances and Appl., 22, Birkhäuser Verlag, Basel, 1986
[30] S. P. Novikov, S. V. Manakov, L. P. Pitaevskij, and V. E. Zakharov, Theory of solitons. The inverse scattering method, Springer-Verlag, 1984
[31] L. Rzepnicki, “Asymptotic behavior of solutions of the Dirac system with an integrable potential”, Integral Equations Operator Theory, 93:55 (2021), 24 pp.
[32] A. M. Savchuk and I. V. Sadovnichaya, “The Riesz basis property with brackets for the Dirac system with a summable potential”, J. Math. Sci. (N.Y.), 233:4 (2018), 514–540
[33] A. M. Savchuk and A. A. Shkalikov, “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5–6 (2014), 777–810