Polynomial approximation by doubly periodic Weierstrass functions on disjoint segments in the $L^P$ metric
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 242-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $s_k, 1\leqslant k\leqslant m, m\geqslant 2$, be disjoint segments lying in a parallelogram $Q$. We denote by $\wp(z)$ a doubly periodic Weierstrass function with the fundamental parallelogram $Q$. Let $f_k:s_k\rightarrow\mathbb{C}$ be functions, and let $f_k'\in L^{p_k}(s_k), 1\leqslant k\leqslant m, 1. Consider the Green function $G(z)$ of the domain $\mathbb{C}\backslash\overset{m}{\underset{k=1}{\cup}} s_k$ with the pole at infinity and define $$ L_h\stackrel{\rm def}{=} \{\ \zeta: \zeta\in\mathbb{C}\backslash\overset{m}{\underset{k=1}{\cup}} s_k, G(\zeta)=\log(1+h) \}, h>0; \rho_h(\zeta)\stackrel{\rm def}{=} \mathrm{dist}(\zeta,L_h). $$ Theorem. There exist polynomials $P_n(u,v), \deg P_n\leqslant n, n=1,2,\cdots$, such that $$ \overset{m}{\underset{k=1}{\sum}}{\underset{s_k}{\int}}\left|\frac{f_k(\zeta)-P_n(\wp(\zeta),\wp'(\zeta))}{\rho_{\frac1n}(\zeta)}\right|^{p_k}|d\zeta|\leqslant c. $$
@article{ZNSL_2023_527_a10,
     author = {M. A. Shagay and N. A. Shirokov},
     title = {Polynomial approximation by doubly periodic {Weierstrass} functions on disjoint segments in the $L^P$ metric},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {242--255},
     year = {2023},
     volume = {527},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a10/}
}
TY  - JOUR
AU  - M. A. Shagay
AU  - N. A. Shirokov
TI  - Polynomial approximation by doubly periodic Weierstrass functions on disjoint segments in the $L^P$ metric
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 242
EP  - 255
VL  - 527
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a10/
LA  - ru
ID  - ZNSL_2023_527_a10
ER  - 
%0 Journal Article
%A M. A. Shagay
%A N. A. Shirokov
%T Polynomial approximation by doubly periodic Weierstrass functions on disjoint segments in the $L^P$ metric
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 242-255
%V 527
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a10/
%G ru
%F ZNSL_2023_527_a10
M. A. Shagay; N. A. Shirokov. Polynomial approximation by doubly periodic Weierstrass functions on disjoint segments in the $L^P$ metric. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 242-255. http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a10/

[1] V. P. Motornyi, “Priblizhenie funktsii algebraicheskimi polinomami v metrike $L_p$”, Izvestiya AN SSSR, seriya matem., 35:4 (1971), 874–899

[2] Yu. V. Krasheninnikova, N. A Shirokov, “Approksimatsiya polinomami v metrike $L_p$ na diz'yunktnykh otrezkakh”, Zap. nauchn. semin. POMI, 270, 2000, 175–200

[3] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, M., 1970

[4] A. V. Khaustov, N. A. Shirokov, “Polinomialnye priblizheniya na zamknutykh podmnozhestvakh ellipticheskikh krivykh”, Zap. nauchn. semin. POMI, 302, 2003, 178–187

[5] V. V. Andrievskii, V. I. Belyi, “Metriko-geometricheskie sootnosheniya dlya konmformnykh otobrazhenii odnosvyaznoi oblasti na vneshnost edinichnogo kruga”, Ukrainskii matem. zhurnal, 29:2 (1977), 147–156

[6] M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, M., 1973