Reverse Carleson measures for Hardy spaces in the unit ball
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 54-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $H^p=H^p(B_d)$ denote the Hardy space in the open unit ball $B_d$ of $\mathbb{C}^d$, $d\ge 1$. We characterize the reverse Carleson measures for $H^p$, $1, that is, we describe all finite positive Borel measures $\mu$ defined on the closed ball $\overline{B}_d$ and such that $$ \|f \|_{H^p} \le c \|f\|_{L^p(\overline{B}_d,\mu)} $$ for all $f\in H^p(B_d) \cap C(\overline{B}_d)$ and a universal constant $c>0$. Given a noninner holomorphic function $b: B_d \to B_1$, we obtain properties of the reverse Carleson measures for the de Branges–Rovnyak space $\mathcal{H}(b)$.
@article{ZNSL_2023_527_a1,
     author = {E. Doubtsov},
     title = {Reverse {Carleson} measures for {Hardy} spaces in the unit ball},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--70},
     year = {2023},
     volume = {527},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a1/}
}
TY  - JOUR
AU  - E. Doubtsov
TI  - Reverse Carleson measures for Hardy spaces in the unit ball
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 54
EP  - 70
VL  - 527
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a1/
LA  - ru
ID  - ZNSL_2023_527_a1
ER  - 
%0 Journal Article
%A E. Doubtsov
%T Reverse Carleson measures for Hardy spaces in the unit ball
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 54-70
%V 527
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a1/
%G ru
%F ZNSL_2023_527_a1
E. Doubtsov. Reverse Carleson measures for Hardy spaces in the unit ball. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 54-70. http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a1/

[1] A. B. Aleksandrov, “Suschestvovanie vnutrennikh funktsii v share”, Matem. sb., 118(160):2(6) (1982), 147–163

[2] A. Blandignères, E. Fricain, F. Gaunard, A. Hartmann, W. T. Ross, “Direct and reverse {C}arleson measures for $\mathcal{H}(b)$ spaces”, Indiana Univ. Math. J., 64:4 (2015), 1027–1057

[3] L. Carleson, “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80 (1958), 921–930

[4] A. W. Green, N. A. Wagner, “Dominating sets in Bergman spaces on strongly pseudoconvex domains”, Constr. Approx., 2023 | DOI

[5] A. Hartmann, X. Massaneda, A. Nicolau, J. Ortega-Cerdà, “Reverse Carleson measures in Hardy spaces”, Collect. Math., 65:3 (2014), 357–365

[6] P. Lefèvre, D. Li, H. Queffélec, L. Rodríguez-Piazza, “Some revisited results about composition operators on Hardy spaces”, Rev. Mat. Iberoam., 28:1 (2012), 57–76

[7] D. H. Luecking, “Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives”, Amer. J. Math., 107:1 (1985), 85–111

[8] W. Rudin, Function theory in the unit ball of $C^{n}$, Grundlehren der Mathematischen Wissenschaften, 241, Springer-Verlag, New York-Berlin, 1980

[9] D. Sarason, Sub-Hardy Hilbert spaces in the unit disk, University of Arkansas Lecture Notes in the Mathematical Sciences, 10, John Wiley Sons, Inc., New York, 1994

[10] K. Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, 226, Springer-Verlag, New York, 2005