, that is, we describe all finite positive Borel measures $\mu$ defined on the closed ball $\overline{B}_d$ and such that $$ \|f \|_{H^p} \le c \|f\|_{L^p(\overline{B}_d,\mu)} $$ for all $f\in H^p(B_d) \cap C(\overline{B}_d)$ and a universal constant $c>0$. Given a noninner holomorphic function $b: B_d \to B_1$, we obtain properties of the reverse Carleson measures for the de Branges–Rovnyak space $\mathcal{H}(b)$.
@article{ZNSL_2023_527_a1,
author = {E. Doubtsov},
title = {Reverse {Carleson} measures for {Hardy} spaces in the unit ball},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--70},
year = {2023},
volume = {527},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a1/}
}
E. Doubtsov. Reverse Carleson measures for Hardy spaces in the unit ball. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 54-70. http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a1/
[1] A. B. Aleksandrov, “Suschestvovanie vnutrennikh funktsii v share”, Matem. sb., 118(160):2(6) (1982), 147–163
[2] A. Blandignères, E. Fricain, F. Gaunard, A. Hartmann, W. T. Ross, “Direct and reverse {C}arleson measures for $\mathcal{H}(b)$ spaces”, Indiana Univ. Math. J., 64:4 (2015), 1027–1057
[3] L. Carleson, “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80 (1958), 921–930
[4] A. W. Green, N. A. Wagner, “Dominating sets in Bergman spaces on strongly pseudoconvex domains”, Constr. Approx., 2023 | DOI
[5] A. Hartmann, X. Massaneda, A. Nicolau, J. Ortega-Cerdà, “Reverse Carleson measures in Hardy spaces”, Collect. Math., 65:3 (2014), 357–365
[6] P. Lefèvre, D. Li, H. Queffélec, L. Rodríguez-Piazza, “Some revisited results about composition operators on Hardy spaces”, Rev. Mat. Iberoam., 28:1 (2012), 57–76
[7] D. H. Luecking, “Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives”, Amer. J. Math., 107:1 (1985), 85–111
[8] W. Rudin, Function theory in the unit ball of $C^{n}$, Grundlehren der Mathematischen Wissenschaften, 241, Springer-Verlag, New York-Berlin, 1980
[9] D. Sarason, Sub-Hardy Hilbert spaces in the unit disk, University of Arkansas Lecture Notes in the Mathematical Sciences, 10, John Wiley Sons, Inc., New York, 1994
[10] K. Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, 226, Springer-Verlag, New York, 2005