Reverse Carleson measures for Hardy spaces in the unit ball
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 54-70
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $H^p=H^p(B_d)$ denote the Hardy space in the open unit ball $B_d$ of $\mathbb{C}^d$, $d\ge 1$. We characterize the reverse Carleson measures for $H^p$, $1$, that is, we describe all finite positive Borel measures $\mu$ defined on the closed ball $\overline{B}_d$ and such that $$ \|f \|_{H^p} \le c \|f\|_{L^p(\overline{B}_d,\mu)} $$ for all $f\in H^p(B_d) \cap C(\overline{B}_d)$ and a universal constant $c>0$. Given a noninner holomorphic function $b: B_d \to B_1$, we obtain properties of the reverse Carleson measures for the de Branges–Rovnyak space $\mathcal{H}(b)$.
@article{ZNSL_2023_527_a1,
author = {E. Doubtsov},
title = {Reverse {Carleson} measures for {Hardy} spaces in the unit ball},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--70},
publisher = {mathdoc},
volume = {527},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a1/}
}
E. Doubtsov. Reverse Carleson measures for Hardy spaces in the unit ball. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 54-70. http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a1/