Reverse Carleson measures for Hardy spaces in the unit ball
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 54-70

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H^p=H^p(B_d)$ denote the Hardy space in the open unit ball $B_d$ of $\mathbb{C}^d$, $d\ge 1$. We characterize the reverse Carleson measures for $H^p$, $1$, that is, we describe all finite positive Borel measures $\mu$ defined on the closed ball $\overline{B}_d$ and such that $$ \|f \|_{H^p} \le c \|f\|_{L^p(\overline{B}_d,\mu)} $$ for all $f\in H^p(B_d) \cap C(\overline{B}_d)$ and a universal constant $c>0$. Given a noninner holomorphic function $b: B_d \to B_1$, we obtain properties of the reverse Carleson measures for the de Branges–Rovnyak space $\mathcal{H}(b)$.
@article{ZNSL_2023_527_a1,
     author = {E. Doubtsov},
     title = {Reverse {Carleson} measures for {Hardy} spaces in the unit ball},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--70},
     publisher = {mathdoc},
     volume = {527},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a1/}
}
TY  - JOUR
AU  - E. Doubtsov
TI  - Reverse Carleson measures for Hardy spaces in the unit ball
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 54
EP  - 70
VL  - 527
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a1/
LA  - ru
ID  - ZNSL_2023_527_a1
ER  - 
%0 Journal Article
%A E. Doubtsov
%T Reverse Carleson measures for Hardy spaces in the unit ball
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 54-70
%V 527
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a1/
%G ru
%F ZNSL_2023_527_a1
E. Doubtsov. Reverse Carleson measures for Hardy spaces in the unit ball. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 54-70. http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a1/