Some extremal problems for martingale transforms. I
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 5-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

With this paper, we begin a series of studies of extremal problems for estimating the distributions of martingale transforms of bounded martingales. The Bellman functions corresponding to such problems are pointwise minimal diagonally concave functions on a horizontal strip, satisfying certain given boundary conditions. We describe the basic structures that arise in the construction such functions and present a solution in the case \break of asymmetric boundary conditions and a sufficiently small width of the strip.
@article{ZNSL_2023_527_a0,
     author = {V. I. Vasyunin and P. B. Zatitskii},
     title = {Some extremal problems for martingale transforms. {I}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--53},
     year = {2023},
     volume = {527},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a0/}
}
TY  - JOUR
AU  - V. I. Vasyunin
AU  - P. B. Zatitskii
TI  - Some extremal problems for martingale transforms. I
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 5
EP  - 53
VL  - 527
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a0/
LA  - ru
ID  - ZNSL_2023_527_a0
ER  - 
%0 Journal Article
%A V. I. Vasyunin
%A P. B. Zatitskii
%T Some extremal problems for martingale transforms. I
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 5-53
%V 527
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a0/
%G ru
%F ZNSL_2023_527_a0
V. I. Vasyunin; P. B. Zatitskii. Some extremal problems for martingale transforms. I. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 51, Tome 527 (2023), pp. 5-53. http://geodesic.mathdoc.fr/item/ZNSL_2023_527_a0/

[1] D. L. Burkholder, “Boundary value problems and sharp inequalities for martingale transforms”, Ann. Prob., 12:3 (1984), 647–702

[2] P. Ivanishvili, N. N. Osipov, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, “Bellman function for extremal problems in $\mathrm{BMO}$”, Trans. Amer. Math. Soc., 368 (2016), 3415–3468

[3] P. Ivanishvili, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskiy, Bellman function for extremal problems on $\mathrm{BMO}$ II: evolution, Mem. Amer. Math. Soc., 255, no. 1220, 2018

[4] P. Ivanishvili, D. M. Stolyarov, V. I. Vasyunin, P. B. Zatitskii, Bellman functions on simple non-convex domains in the plane, arXiv: 2305.03523

[5] M. I. Novikov, “Dostatochnye usloviya minimalnosti bivognutykh funktsii”, Algebra i analiz, 34:5 (2022), 173–210

[6] A. Osȩkowski, Sharp martingale and semimartingale inequalities, Monografie Matematyczne IMPAN, 72, Springer, Basel, 2012

[7] D. Stolyarov, V. Vasyunin, P. Zatitskii, Martingale transforms of bounded random variables and indicator functions of events, arXiv: 2310.02362

[8] D. M. Stolyarov and P. B. Zatitskiy, “Theory of locally concave functions and its applications to sharp estimates of integral functionals”, Adv. Math., 291 (2016), 228–273