@article{ZNSL_2023_526_a9,
author = {F. Petrov and J. Randon-Furling and D. Zaporozhets},
title = {Convex hulls of random walks: conic intrinsic volumes approach},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {159--171},
year = {2023},
volume = {526},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a9/}
}
TY - JOUR AU - F. Petrov AU - J. Randon-Furling AU - D. Zaporozhets TI - Convex hulls of random walks: conic intrinsic volumes approach JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 159 EP - 171 VL - 526 UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a9/ LA - en ID - ZNSL_2023_526_a9 ER -
F. Petrov; J. Randon-Furling; D. Zaporozhets. Convex hulls of random walks: conic intrinsic volumes approach. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 159-171. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a9/
[1] D. Amelunxen, M. Lotz, “Intrinsic volumes of polyhedral cones: a combinatorial perspective”, Discrete Comput. Geom., 58:2 (2017), 371–409 | DOI | MR | Zbl
[2] Z. Kabluchko, V. Vysotsky, D. Zaporozhets, “Convex hulls of random walks, hyperplane arrangements, and Weyl chambers”, Geom. Funct. Anal., 27:4 (2017), 880–918 | DOI | MR | Zbl
[3] Z. Kabluchko, V. Vysotsky, D. Zaporozhets, “A multidimensional analogue of the arcsine law for the number of positive terms in a random walk”, Bernoulli, 25:1 (2019), 521–548 | DOI | MR | Zbl
[4] M. A. Perles, G. C. Shephard, “Angle sums of convex polytopes”, Math. Scand., 21 (1967), 199–218 | DOI | MR | Zbl
[5] R. Schneider, W. Weil, Stochastic and Integral Geometry, Probability and its Applications (New York), Springer, Berlin, 2008 | DOI | MR | Zbl
[6] E. Sparre Andersen, “On sums of symmetrically dependent random variables”, Skand. Aktuarietidskr., 36 (1953), 123–138 | MR
[7] E. Sparre Andersen, “On the number of positive sums of random variables”, Skand. Aktuarietidskr., 1949 (1949), 27–36 | MR | Zbl
[8] E. Sparre Andersen, “On the fluctuations of sums of random variables”, Math. Scand., 1 (1953), 263–285 | DOI | MR | Zbl
[9] T. Zaslavsky, Facing up to arrangements: Face-count formulas for partitions of space by hyperplanes, Mem. Amer. Math. Soc., 154, Providence, RI, 1975 | MR | Zbl