On the probabilistic representation of the resolvent of the two-dimensional Schr\"odinger operator
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 140-158
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a family of random linear operators that arises in the construction of a probabilistic representation of the resolvent of the two-dimensional Schrödinger operator. It is shown that with probability one the operators of this family are integral operators in $L_2(\mathbb{R}^2)$. The properties of the kernels of the corresponding operators are also investigated.
			
            
            
            
          
        
      @article{ZNSL_2023_526_a8,
     author = {A. K. Nikolaev},
     title = {On the probabilistic representation of the resolvent of the two-dimensional {Schr\"odinger} operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--158},
     publisher = {mathdoc},
     volume = {526},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a8/}
}
                      
                      
                    TY - JOUR AU - A. K. Nikolaev TI - On the probabilistic representation of the resolvent of the two-dimensional Schr\"odinger operator JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 140 EP - 158 VL - 526 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a8/ LA - ru ID - ZNSL_2023_526_a8 ER -
A. K. Nikolaev. On the probabilistic representation of the resolvent of the two-dimensional Schr\"odinger operator. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 140-158. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a8/
