@article{ZNSL_2023_526_a8,
author = {A. K. Nikolaev},
title = {On the probabilistic representation of the resolvent of the two-dimensional {Schr\"odinger} operator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {140--158},
year = {2023},
volume = {526},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a8/}
}
A. K. Nikolaev. On the probabilistic representation of the resolvent of the two-dimensional Schrödinger operator. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 140-158. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a8/
[1] D. R. Yafaev, Mathematical Scattering Theory. Analytic Theory, Math. Surveys and Monographs, 158, Amer. Math. Soc., Providence, Rhode Island, 2010 | DOI | MR | Zbl
[2] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “O svoistvakh odnogo klassa sluchainykh operatorov”, Zap. nauchn. semin. POMI, 510, 2022, 143–164
[3] G. Vatson, Teoriya besselevykh funktsii, IL, M., 1949
[4] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR
[5] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, Izd-vo inostr. literatury, M., 1962 | MR
[6] A. Ya. Khelemskii, Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004
[7] T. Ikebe, “Eigenfunction expansions associated with the Schrödinger operators and their applications to scattering theory”, Archive Rational Mechan. Anal., 5 (1960), 1–34 | DOI | MR | Zbl
[8] A. K. Nikolaev, “O veroyatnostnom predstavlenii rezolventy dvumernogo operatora Laplasa”, Zap. nauchn. semin. POMI, 510, 2022, 189–200
[9] D. K. Faddeev, B. Z. Vulikh, N. N. Uraltseva, Izbrannye glavy analiza i vysshei algebry, Izd-vo Leningr. un-ta, L., 1981
[10] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd–vo Leningr. un-ta, L., 1980
[11] A. H. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Izd-vo fiz.-matem. literatury, M., 1977 | MR