On the probabilistic representation of the resolvent of the two-dimensional Schr\"odinger operator
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 140-158

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of random linear operators that arises in the construction of a probabilistic representation of the resolvent of the two-dimensional Schrödinger operator. It is shown that with probability one the operators of this family are integral operators in $L_2(\mathbb{R}^2)$. The properties of the kernels of the corresponding operators are also investigated.
@article{ZNSL_2023_526_a8,
     author = {A. K. Nikolaev},
     title = {On the probabilistic representation of the resolvent of the two-dimensional {Schr\"odinger} operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--158},
     publisher = {mathdoc},
     volume = {526},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a8/}
}
TY  - JOUR
AU  - A. K. Nikolaev
TI  - On the probabilistic representation of the resolvent of the two-dimensional Schr\"odinger operator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 140
EP  - 158
VL  - 526
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a8/
LA  - ru
ID  - ZNSL_2023_526_a8
ER  - 
%0 Journal Article
%A A. K. Nikolaev
%T On the probabilistic representation of the resolvent of the two-dimensional Schr\"odinger operator
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 140-158
%V 526
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a8/
%G ru
%F ZNSL_2023_526_a8
A. K. Nikolaev. On the probabilistic representation of the resolvent of the two-dimensional Schr\"odinger operator. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 140-158. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a8/