On the probabilistic representation of the resolvent of the two-dimensional Schrödinger operator
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 140-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a family of random linear operators that arises in the construction of a probabilistic representation of the resolvent of the two-dimensional Schrödinger operator. It is shown that with probability one the operators of this family are integral operators in $L_2(\mathbb{R}^2)$. The properties of the kernels of the corresponding operators are also investigated.
@article{ZNSL_2023_526_a8,
     author = {A. K. Nikolaev},
     title = {On the probabilistic representation of the resolvent of the two-dimensional {Schr\"odinger} operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--158},
     year = {2023},
     volume = {526},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a8/}
}
TY  - JOUR
AU  - A. K. Nikolaev
TI  - On the probabilistic representation of the resolvent of the two-dimensional Schrödinger operator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 140
EP  - 158
VL  - 526
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a8/
LA  - ru
ID  - ZNSL_2023_526_a8
ER  - 
%0 Journal Article
%A A. K. Nikolaev
%T On the probabilistic representation of the resolvent of the two-dimensional Schrödinger operator
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 140-158
%V 526
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a8/
%G ru
%F ZNSL_2023_526_a8
A. K. Nikolaev. On the probabilistic representation of the resolvent of the two-dimensional Schrödinger operator. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 140-158. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a8/

[1] D. R. Yafaev, Mathematical Scattering Theory. Analytic Theory, Math. Surveys and Monographs, 158, Amer. Math. Soc., Providence, Rhode Island, 2010 | DOI | MR | Zbl

[2] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “O svoistvakh odnogo klassa sluchainykh operatorov”, Zap. nauchn. semin. POMI, 510, 2022, 143–164

[3] G. Vatson, Teoriya besselevykh funktsii, IL, M., 1949

[4] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[5] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, Izd-vo inostr. literatury, M., 1962 | MR

[6] A. Ya. Khelemskii, Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004

[7] T. Ikebe, “Eigenfunction expansions associated with the Schrödinger operators and their applications to scattering theory”, Archive Rational Mechan. Anal., 5 (1960), 1–34 | DOI | MR | Zbl

[8] A. K. Nikolaev, “O veroyatnostnom predstavlenii rezolventy dvumernogo operatora Laplasa”, Zap. nauchn. semin. POMI, 510, 2022, 189–200

[9] D. K. Faddeev, B. Z. Vulikh, N. N. Uraltseva, Izbrannye glavy analiza i vysshei algebry, Izd-vo Leningr. un-ta, L., 1981

[10] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd–vo Leningr. un-ta, L., 1980

[11] A. H. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Izd-vo fiz.-matem. literatury, M., 1977 | MR