@article{ZNSL_2023_526_a7,
author = {Iu. Makarova},
title = {Branching random walks with two types of particles and different variances of jumps},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {130--139},
year = {2023},
volume = {526},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a7/}
}
Iu. Makarova. Branching random walks with two types of particles and different variances of jumps. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 130-139. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a7/
[1] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izdatelstvo Tsentra prikladnykh issledovanii pri mekhaniko-matematicheskom fakultete MGU, M., 2007
[2] A. Rytova, E. Yarovaya, “Survival analysis of particle populations in branching random walks”, Commun. Statist. Part B: Simulation and Computation, 50:4 (2019), 1–15 | MR
[3] Iu. Makarova, D. Balashova, S. Molchanov, E. Yarovaya, “Branching random walks with two types of particles on multidimensional lattices”, Mathematics, 10:6 (2022), 1–46 | DOI
[4] S. Molchanov, J. Whitmeyer, “Spatial models of population processes”, Modern Problems of Stochastic Analysis and Statistics – selected contributions in honor of Valentin Konakov, ed. V. Panov, Springer, 2017, 435–454 | DOI | MR | Zbl
[5] Yu. Makarova, V. Kutsenko, E. Yarovaya, “On two-type branching random walks and their applications for genetic modelling”, Recent Developments in Stochastic Methods and Application, Springer Proceedings in Mathematics $\$ Statistics, 371, 2021, 255–268 | DOI | MR