Branching random walks with two types of particles and different variances of jumps
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 130-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the model of two-type branching random walk in which each type has not only its own branching mechanism but also its own generator of random walk. We obtained the asymptotic behaviour for the first moments of subpopulations.
@article{ZNSL_2023_526_a7,
     author = {Iu. Makarova},
     title = {Branching random walks with two types of particles and different variances of jumps},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {130--139},
     year = {2023},
     volume = {526},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a7/}
}
TY  - JOUR
AU  - Iu. Makarova
TI  - Branching random walks with two types of particles and different variances of jumps
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 130
EP  - 139
VL  - 526
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a7/
LA  - ru
ID  - ZNSL_2023_526_a7
ER  - 
%0 Journal Article
%A Iu. Makarova
%T Branching random walks with two types of particles and different variances of jumps
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 130-139
%V 526
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a7/
%G ru
%F ZNSL_2023_526_a7
Iu. Makarova. Branching random walks with two types of particles and different variances of jumps. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 130-139. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a7/

[1] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izdatelstvo Tsentra prikladnykh issledovanii pri mekhaniko-matematicheskom fakultete MGU, M., 2007

[2] A. Rytova, E. Yarovaya, “Survival analysis of particle populations in branching random walks”, Commun. Statist. Part B: Simulation and Computation, 50:4 (2019), 1–15 | MR

[3] Iu. Makarova, D. Balashova, S. Molchanov, E. Yarovaya, “Branching random walks with two types of particles on multidimensional lattices”, Mathematics, 10:6 (2022), 1–46 | DOI

[4] S. Molchanov, J. Whitmeyer, “Spatial models of population processes”, Modern Problems of Stochastic Analysis and Statistics – selected contributions in honor of Valentin Konakov, ed. V. Panov, Springer, 2017, 435–454 | DOI | MR | Zbl

[5] Yu. Makarova, V. Kutsenko, E. Yarovaya, “On two-type branching random walks and their applications for genetic modelling”, Recent Developments in Stochastic Methods and Application, Springer Proceedings in Mathematics $\$ Statistics, 371, 2021, 255–268 | DOI | MR