@article{ZNSL_2023_526_a6,
author = {A. V. Lyulintsev},
title = {Markov branching random walks on $\mathbf{Z}_+$ with absorption at zero},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {109--129},
year = {2023},
volume = {526},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a6/}
}
A. V. Lyulintsev. Markov branching random walks on $\mathbf{Z}_+$ with absorption at zero. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 109-129. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a6/
[1] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, M., 1961
[2] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Ucheb. posobie, L., 1980
[3] I. I. Gikhman, A. V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR
[4] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, v. II, Nauka, M., 1973
[5] A. V. Lyulintsev, “Nepreryvnye vetvyaschiesya markovskie protsessy na $\mathbf{Z}_+$: podkhod s ispolzovaniem ortogonalnykh mnogochlenov”, Teoriya veroyatn. i ee primen. (to appear)
[6] N. V. Smorodina, E. B. Yarovaya, “Martingalnyi metod issledovaniya vetvyaschikhsya sluchainykh bluzhdanii”, Uspekhi matem. nauk, 77:5(467) (2022), 193–194 | DOI | MR | Zbl
[7] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Izdatelstvo Tsentra prikladnykh issledovanii pri mekhaniko-matematicheskom fakultete MGU, M., 2007