Periodic branching random walk on $\mathbf {Z}^d$ with immigration
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 90-108

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a continuous-time branching random walk with immigration on $\mathbf {Z}^d$ with branching sources located periodically. The asymptotic behavior of the mean number of particles at an arbitrary point is obtained for $t\to\infty$ in the supercritical and subcritical cases.
@article{ZNSL_2023_526_a5,
     author = {I. I. Lukashova},
     title = {Periodic branching random walk on $\mathbf {Z}^d$ with immigration},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {90--108},
     publisher = {mathdoc},
     volume = {526},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a5/}
}
TY  - JOUR
AU  - I. I. Lukashova
TI  - Periodic branching random walk on $\mathbf {Z}^d$ with immigration
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 90
EP  - 108
VL  - 526
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a5/
LA  - ru
ID  - ZNSL_2023_526_a5
ER  - 
%0 Journal Article
%A I. I. Lukashova
%T Periodic branching random walk on $\mathbf {Z}^d$ with immigration
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 90-108
%V 526
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a5/
%G ru
%F ZNSL_2023_526_a5
I. I. Lukashova. Periodic branching random walk on $\mathbf {Z}^d$ with immigration. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 90-108. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a5/