@article{ZNSL_2023_526_a4,
author = {M. S. Ermakov},
title = {On uniform consistency of nonparametric tests},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {78--89},
year = {2023},
volume = {526},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a4/}
}
M. S. Ermakov. On uniform consistency of nonparametric tests. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 78-89. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a4/
[1] L. Birge, “Robust tests for model selection”, IMS Collections, 9 (2012), 47–64 | MR
[2] M. V. Burnashev, “On the minimax solution of inaccurately known signal in a white Gaussian noise. Background”, Theory Probab. Appl., 24 (1979), 107–119 | DOI | MR | Zbl
[3] A. Dembo, Y. Peres, “A topological criterion for hypothesis testing”, Ann. Statist., 22 (1994), 106–117 | DOI | MR | Zbl
[4] N. Dunford, J. T. Schwartz, Linear operators, Interscience Publishers, NY, 1958 | MR | Zbl
[5] H. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer, 1996 | MR | Zbl
[6] M. S. Ermakov, “On consistent hypothesis testing”, J. Math. Sci., 225 (2017), 751–769 | DOI | MR | Zbl
[7] M. S. Ermakov, “Minimax nonparametric estimation on maxisets”, J. Math. Sci., 244 (2020), 779–788 | DOI | MR | Zbl
[8] M. S. Ermakov, “On asymptotically minimax nonparametric detection of signal in Gaussian white noise”, J. Math. Sci., 251 (2020), 78–87 | DOI | MR | Zbl
[9] M. S. Ermakov, “On uniform consistency of nonparametric tests I”, J. Math. Sci., 258 (2021), 802–837 | DOI | MR | Zbl
[10] P. Gänssler, “Compactness and sequential compactness on the space of measures”, Z. Wahrsch. Verw. Geb., 17 (1971), 124–146 | DOI | MR
[11] I. A. Ibragimov, R. Z. Khasminskii, “On the estimation of infinitely dimensional parameter in Gaussian white noise”, Dokl. AN USSR, 236 (1977), 1053–1055 | MR | Zbl
[12] W. Hoeffding, J. Wolfowitz, “Distinguishability of sets of distributions”, Ann. Math. Statist., 29 (1958), 700–718 | DOI | MR | Zbl
[13] Yu. I. Ingster, “Asymptotically minimax hypothesis testing for nonparametric alternatives. I, II, III”, Math. Methods Statist., 2 (1993), 85–114 ; 171–189 ; 249–268 | MR | Zbl | MR | Zbl | MR | Zbl
[14] Yu. I. Ingster, Yu. A. Kutoyants, “Nonparametric hypothesis testing for intensity of the Poisson process”, Math. Methods Statist., 16 (2007), 218–246 | MR
[15] Yu. I. Ingster, I. A. Suslina, Nonparametric Goodness-of-fit Testing under Gaussian Models, Lect. Notes Statist., 169, Springer, NY, 2002 | MR
[16] A. Janssen, “Global power function of goodness of fit tests”, Ann. Statist., 28 (2020), 239–253 | MR
[17] G. Kerkyacharian, D. Picard, “Density estimation by kernel and wavelets methods: optimality of Besov spaces”, Statist. Probab. Lett., 18 (1993), 327–336 | DOI | MR | Zbl
[18] C. Kraft, “Some conditions for consistency and uniform consistency of statistical procedures”, Univ. Californ. Publ. Statist., 2 (1955), 125–142 | MR | Zbl
[19] V. Krotov, “Criteria for compactness in $\mathbb{L}_p$-spaces, $p>0$”, Russian Acad. Sci. Sbornik Math., 203:7 (2012), 1045–1064 | DOI | MR | Zbl
[20] L. Le Cam, “Convergence of estimates under dimensionality restrictions”, Ann. Statist., 1 (1973), 38–53 | MR | Zbl
[21] L. Le Cam, L. Schwartz, “A necessary and sufficient conditions for the existence of consistent estimates”, Ann. Math. Statist., 31 (1960), 140–150 | DOI | MR | Zbl
[22] J. Pfanzagl, “On the existence of consistent estimates and tests”, Z. Wahrsch. Verw. Geb., 10 (1968), 43–62 | DOI | MR | Zbl
[23] V. Rivoirard, “Maxisets for linear procedures”, Statist. Probab. Lett., 67 (2004), 267–275 | DOI | MR | Zbl
[24] Y. Wei, M. J. Wainwright, “The local geometry of testing in ellipses: tight control via localized Kolmogorov widths”, IEEE Trans. Inform. Theory, 66:8 (2020), 5110–5129 | DOI | MR | Zbl