On the distribution of inhomogeneous functionals of Brownian local time
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 52-77

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the question: how to calculate distributions of the simplest inhomogeneous integral functional of Brownian local time with respect to space parameter. For the Laplace transform of distribution of such a functional we obtaine formulas expressed in terms of solutions of the second order differential equations, satisfying some boundary conditions. As an application of these formulas the joint distribution of suprema of Brownian local time at adjacent intervals are derived.
@article{ZNSL_2023_526_a3,
     author = {A. N. Borodin},
     title = {On the distribution of inhomogeneous functionals of {Brownian} local time},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {52--77},
     publisher = {mathdoc},
     volume = {526},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a3/}
}
TY  - JOUR
AU  - A. N. Borodin
TI  - On the distribution of inhomogeneous functionals of Brownian local time
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 52
EP  - 77
VL  - 526
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a3/
LA  - ru
ID  - ZNSL_2023_526_a3
ER  - 
%0 Journal Article
%A A. N. Borodin
%T On the distribution of inhomogeneous functionals of Brownian local time
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 52-77
%V 526
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a3/
%G ru
%F ZNSL_2023_526_a3
A. N. Borodin. On the distribution of inhomogeneous functionals of Brownian local time. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 52-77. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a3/