Investment optimization in the Heston model
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 29-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The investment portfolio optimization problem in the Heston model is solved via several reductions. Namely, we reduce the original problem to the Cauchy problem for a new fully nonlinear parabolic equation and construct its probabilistic representation via solution of a forward–backward stochastic differential equation (FBSDE). Next we reduce solution of the FBSDE to a new optimization problem and construct its numerical solution applying the neural network technique.
@article{ZNSL_2023_526_a2,
     author = {Ya. I. Belopolskaya and A. A. Chubatov},
     title = {Investment optimization in the {Heston} model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {29--51},
     year = {2023},
     volume = {526},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a2/}
}
TY  - JOUR
AU  - Ya. I. Belopolskaya
AU  - A. A. Chubatov
TI  - Investment optimization in the Heston model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 29
EP  - 51
VL  - 526
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a2/
LA  - ru
ID  - ZNSL_2023_526_a2
ER  - 
%0 Journal Article
%A Ya. I. Belopolskaya
%A A. A. Chubatov
%T Investment optimization in the Heston model
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 29-51
%V 526
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a2/
%G ru
%F ZNSL_2023_526_a2
Ya. I. Belopolskaya; A. A. Chubatov. Investment optimization in the Heston model. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 29-51. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a2/

[1] T. Bork, Teoriya arbitrazha v nepreryvnom vremeni, Izd. MTsNMO, M., 2010

[2] S. L. Heston, “A closed-form solution for options with stochastic volatility with applications to bond and currency options”, Review Financ. Stud., 6 (1993), 327–343 | DOI | MR | Zbl

[3] N.Touzi, Stochastic Control and Application to Finance, Ecole Polytechnique, Paris, 2018 | MR

[4] J. Han, A. Jentzen, E. Weinan, “Solving high-dimensional partial differential equations using deep learning”, Proc. Nat. Acad. Sci. USA, 115:34 (2018), 8505–8510 | DOI | MR | Zbl

[5] H. Pham, X. Warin, M. Germain, “Neural networks-based backward scheme for fully nonlinear PDEs”, SN Partial Diff. Eq. Appl., 2 (2021), 1–21 | DOI | MR

[6] C. Beck, M Hutzenthaler, A. Jentzen, B. Kuckuck, “An overview on deep learning-based approximation methods for partial differential equations”, Discrete Contin. Dyn. Syst., Ser. B, 28:6 (2023), 3697–3746 | DOI | MR

[7] M. Hutzenthaler, A. Jentzen, T. Kruse, “Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities”, Found. Comput. Math., 22 (2022), 905–966 | DOI | MR | Zbl

[8] Ya. Belopolskaya, Yu. Dalecky, “Investigation of the Cauchy problem with quasilinear systems with finite and infinite number of arguments by means of Markov random processes”, Izv. VUZ Math., 38:12 (1978), 6–17

[9] Ya. Belopolskaya, Yu. Dalecky, Stochastic Equations and Differential Geometry, Kluwer, 1990 | MR | Zbl

[10] Ya. Belopolskaya, W. A. Woyczynski, “SDEs, FBSDEs and fully nonlinear parabolic systems”, Rend. Sem. Mat. Univ. Politec. Torino, 71:2 (2013), 209–217 | MR | Zbl

[11] Ya. Belopolskaya, “Probabilistic interpretations of quasilinear parabolic equations”, AMS. Contemporary Mathematics, 734, 2019, 39–56 | DOI | MR

[12] E. Pardoux, S. Peng, “Backward stochastic differential equations and quasilinear parabolic partial differential”, Lect. Notes CIS, 176, 1992, 200–217 | MR | Zbl

[13] E. Pardoux, “Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic pdes of second order”, Stoch. Anal. Relat. Topics: The Geilo Workshop, Birkháuser, 1996, 79–127 | MR

[14] P. Cheridito, M. Soner, N. Touzi, N. Victoir, “Second order backward stochastic differential equations and fully nonlinear parabolic PDEs”, Commun. Pure Appl. Math., 60:7 (2007), 1081–1110 | DOI | MR | Zbl

[15] M. Soner, N. Touzi, J. Zhang, “Wellposedness of second order backward SDEs”, Probab. Theory Relat. Fields, 153 (2012), 149–190 | DOI | MR | Zbl

[16] S. Ji, S. Peng, Y. Peng, X. Zhang, A deep learning method for solving stochastic optimal control problems driven by fully-coupled FBSDEs, 2022, arXiv: 2204.05796

[17] M. Raissi, Forward-backward stochastic neural networks: deep learning of high dimensional partial differential equations, 2018, arXiv: 1804.07010

[18] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, J. M. Siskind, Automatic differentiation in machine learning: a survey, 2015, arXiv: 1502.05767 | MR

[19] G. Cybenko, “Approximation by superpositions of a sigmoidal function”, Math. Control Signals Syst., 2:4 (1989), 303–314 | DOI | MR | Zbl

[20] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016 | MR | Zbl