@article{ZNSL_2023_526_a11,
author = {V. N. Solev},
title = {BMO space and the problem of estimating a function in stationary noise},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {193--206},
year = {2023},
volume = {526},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a11/}
}
V. N. Solev. BMO space and the problem of estimating a function in stationary noise. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 193-206. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a11/
[1] Yu. A. Rozanov, Statsionarnye protsessy, Mir, M., 1963
[2] I. A. Ibragimov, Yu. A. Rozanov, Gaussovskie protsessy, Mir, M., 1974
[3] I. A. Ibragimov, R. Z. Khasminskii, “O neparametricheskom otsenivanii znacheniya lineinogo funktsionala v gaussovskom belom shume”, Teoriya veroyatn. i ee primen., 29:1 (1984), 19–32 | MR | Zbl
[4] D. L. Donoho, R. C. Liu, B. MacGibbon, “Minimax risk over hyperrectangles, and implications”, Ann. Statist., 18:3 (1990), 1416–1437 | DOI | MR | Zbl
[5] W. Stepanoff, “Sur quelques generalisations des fonctions presque-periodiques”, Comptes Rendus, 181 (1925), 90–92
[6] N. Viner, R. Peli, Preobrazovanie Fure v kompleksnoi ploskosti, Nauka, M., 1964
[7] J. B. Garnett, Bounded Analytic Functions, Academic Press, NY, 1981 | MR | Zbl
[8] V. N. Solev, “Uslovie lokalnoi asimptoticheskoi normalnosti dlya gaussovskikh statsionarnykh protsessov”, Zap. nauchn. semin. POMI, 278, 2001, 225–247 | Zbl
[9] V. N. Solev, “Otsenka funktsii, nablyudaemoi na fone statsionarnogo shuma: diskretizatsiya”, Zap. nauchn. semin. POMI, 441, 2015, 286–298