BMO space and the problem of estimating a function in stationary noise
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 193-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we construct lower and upper bounds for minimax risk in the problem of estimating the unknown pseudo-periodic function observed in the stationary noise with a spectral density satisfying the Muckenhoupt condition, with some a priori information about the behavior of the spectral density in the neighborhood of the spectrum of the signal.
@article{ZNSL_2023_526_a11,
     author = {V. N. Solev},
     title = {BMO space and the problem of estimating a function in stationary noise},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {193--206},
     year = {2023},
     volume = {526},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a11/}
}
TY  - JOUR
AU  - V. N. Solev
TI  - BMO space and the problem of estimating a function in stationary noise
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 193
EP  - 206
VL  - 526
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a11/
LA  - ru
ID  - ZNSL_2023_526_a11
ER  - 
%0 Journal Article
%A V. N. Solev
%T BMO space and the problem of estimating a function in stationary noise
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 193-206
%V 526
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a11/
%G ru
%F ZNSL_2023_526_a11
V. N. Solev. BMO space and the problem of estimating a function in stationary noise. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 193-206. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a11/

[1] Yu. A. Rozanov, Statsionarnye protsessy, Mir, M., 1963

[2] I. A. Ibragimov, Yu. A. Rozanov, Gaussovskie protsessy, Mir, M., 1974

[3] I. A. Ibragimov, R. Z. Khasminskii, “O neparametricheskom otsenivanii znacheniya lineinogo funktsionala v gaussovskom belom shume”, Teoriya veroyatn. i ee primen., 29:1 (1984), 19–32 | MR | Zbl

[4] D. L. Donoho, R. C. Liu, B. MacGibbon, “Minimax risk over hyperrectangles, and implications”, Ann. Statist., 18:3 (1990), 1416–1437 | DOI | MR | Zbl

[5] W. Stepanoff, “Sur quelques generalisations des fonctions presque-periodiques”, Comptes Rendus, 181 (1925), 90–92

[6] N. Viner, R. Peli, Preobrazovanie Fure v kompleksnoi ploskosti, Nauka, M., 1964

[7] J. B. Garnett, Bounded Analytic Functions, Academic Press, NY, 1981 | MR | Zbl

[8] V. N. Solev, “Uslovie lokalnoi asimptoticheskoi normalnosti dlya gaussovskikh statsionarnykh protsessov”, Zap. nauchn. semin. POMI, 278, 2001, 225–247 | Zbl

[9] V. N. Solev, “Otsenka funktsii, nablyudaemoi na fone statsionarnogo shuma: diskretizatsiya”, Zap. nauchn. semin. POMI, 441, 2015, 286–298