@article{ZNSL_2023_526_a10,
author = {N. V. Smorodina and E. B. Yarovaya},
title = {On one limit theorem for branching random walks with a finite number of particle types},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {172--192},
year = {2023},
volume = {526},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a10/}
}
TY - JOUR AU - N. V. Smorodina AU - E. B. Yarovaya TI - On one limit theorem for branching random walks with a finite number of particle types JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 172 EP - 192 VL - 526 UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a10/ LA - ru ID - ZNSL_2023_526_a10 ER -
N. V. Smorodina; E. B. Yarovaya. On one limit theorem for branching random walks with a finite number of particle types. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 172-192. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a10/
[1] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Tsentr prikl. issled. pri mekh.-matem. f-te MGU, M., 2007
[2] Y. B. Zel'dovich, S. A. Molchanov, A. A. Ruzmaĭkin, D. D. Sokoloff, “Intermittency, diffusion and generation in a nonstationary random medium”, Mathem. Phys. Reviews, 7, Harwood Academic Publ., Chur, 1988, 3–110 | MR
[3] J. Gärtner, S. A. Molchanov, “Parabolic problems for the Anderson model. II. Second-order asymptotics and structure of high peaks”, Probab. Theory Relat. Fields, 111:1 (1998), 17–55 | DOI | MR
[4] M. Cranston, L. Koralov, S. Molchanov, B. Vainberg, “Continuous model for homopolymers”, J. Funct. Anal., 256:8 (2009), 2656–2696 | DOI | MR | Zbl
[5] B. A. Sevastyanov, “Teoriya vetvyaschikhsya sluchainykh protsessov”, Uspekhi matem. nauk, 6:6(46) (1951), 47–99 | MR | Zbl
[6] A. N. Kolmogorov, “Ob analiticheskikh metodakh v teorii veroyatnostei”, Uspekhi matem. nauk, 1938, no. 5, 5–41
[7] Iu. Makarova, D. Balashova, S. Molchanov, E. Yarovaya, “Branching random walks with two types of particles on multidimensional lattices”, Mathematics, 10:6 (2022), 1–46 | DOI
[8] I. I. Gikhman, A. V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR
[9] Dzh. D. Biggins, “Skhodimost martingalov i bolshie ukloneniya v vetvyaschemsya sluchainom bluzhdanii”, Teoriya veroyatn. i ee primen., 37:2 (1992), 301–306 | MR
[10] A. Ioffe, “A new martingale in branching random walk”, Ann. Appl. Probab., 3:4 (1993), 1145–1150 | MR
[11] N. V. Smorodina, E. B. Yarovaya, “Martingalnyi metod issledovaniya vetvyaschikhsya sluchainykh bluzhdanii”, Uspekhi matem. nauk, 77:5 (2022), 193–194 | DOI | MR | Zbl
[12] N. V. Smorodina, E. B. Yarovaya, “Ob odnoi predelnoi teoreme dlya vetvyaschikhsya sluchainykh bluzhdanii”, Teoriya veroyatn. i ee primen., 68:4 (2023), 779–795 | DOI
[13] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR
[14] A. D. Venttsel, Kurs teorii sluchainykh protsessov, 2-e izdanie, Nauka, Fizmatlit, M., 1996 | MR
[15] P. Major, Multiple Wiener–Ito Integrals. With Applications to Limit Theorems, Lect. Notes Math., 849, Springer, Berlin–Heidelberg–NY, 1981 | DOI | MR | Zbl
[16] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR
[17] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, 2010
[18] K.-Ch. Chang, X. Wang, X. Wu, “On the spectral theory of positive operators and PDE applications”, Discrete Contin. Dymam. Syst., 40:6 (2020), 3171–3200 | DOI | MR | Zbl
[19] P. P. Zabreiko, S. V. Smitskikh, “Ob odnoi teoreme M. G. Kreina–M. A. Rutmana”, Funkts. analiz i ego prilozh., 13:3 (1979), 81–82 | MR | Zbl