On one limit theorem for branching random walks with a finite number of particle types
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 172-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a branching random walk on the lattice $\mathbb{Z}^d$, $d\in \mathbb{N}$, in which at any point of $\mathbb{Z}^d$ a particle of every type can die or produce an arbitrary number of offsprings of different types. The walk of a particle of each type on $\mathbb{Z}^d$ is described by a symmetric homogeneous and irreducible random walk. We assume that the branching intensity of particles of any type at a point $x\in \mathbb{Z}^d$ tends to zero as $\|x\|\to\infty$, and an additional condition is fulfilled on the parameters of the branching random walk, guaranteeing exponential in time growth of the mean number of particles of each type at each point $\mathbb{Z}^d$. Under these assumptions we prove the limit theorem on the convergence of normalised number of particles of each type at an arbitrary fixed point $y_{0}\in \mathbb{Z}^d$ as $t\rightarrow\infty$ to the limit in mean square. The proof is based on an approximation of the normalised number of particles by some non-negative martingale.
@article{ZNSL_2023_526_a10,
     author = {N. V. Smorodina and E. B. Yarovaya},
     title = {On one limit theorem for branching random walks with a finite number of particle types},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {172--192},
     year = {2023},
     volume = {526},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a10/}
}
TY  - JOUR
AU  - N. V. Smorodina
AU  - E. B. Yarovaya
TI  - On one limit theorem for branching random walks with a finite number of particle types
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 172
EP  - 192
VL  - 526
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a10/
LA  - ru
ID  - ZNSL_2023_526_a10
ER  - 
%0 Journal Article
%A N. V. Smorodina
%A E. B. Yarovaya
%T On one limit theorem for branching random walks with a finite number of particle types
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 172-192
%V 526
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a10/
%G ru
%F ZNSL_2023_526_a10
N. V. Smorodina; E. B. Yarovaya. On one limit theorem for branching random walks with a finite number of particle types. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 172-192. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a10/

[1] E. B. Yarovaya, Vetvyaschiesya sluchainye bluzhdaniya v neodnorodnoi srede, Tsentr prikl. issled. pri mekh.-matem. f-te MGU, M., 2007

[2] Y. B. Zel'dovich, S. A. Molchanov, A. A. Ruzmaĭkin, D. D. Sokoloff, “Intermittency, diffusion and generation in a nonstationary random medium”, Mathem. Phys. Reviews, 7, Harwood Academic Publ., Chur, 1988, 3–110 | MR

[3] J. Gärtner, S. A. Molchanov, “Parabolic problems for the Anderson model. II. Second-order asymptotics and structure of high peaks”, Probab. Theory Relat. Fields, 111:1 (1998), 17–55 | DOI | MR

[4] M. Cranston, L. Koralov, S. Molchanov, B. Vainberg, “Continuous model for homopolymers”, J. Funct. Anal., 256:8 (2009), 2656–2696 | DOI | MR | Zbl

[5] B. A. Sevastyanov, “Teoriya vetvyaschikhsya sluchainykh protsessov”, Uspekhi matem. nauk, 6:6(46) (1951), 47–99 | MR | Zbl

[6] A. N. Kolmogorov, “Ob analiticheskikh metodakh v teorii veroyatnostei”, Uspekhi matem. nauk, 1938, no. 5, 5–41

[7] Iu. Makarova, D. Balashova, S. Molchanov, E. Yarovaya, “Branching random walks with two types of particles on multidimensional lattices”, Mathematics, 10:6 (2022), 1–46 | DOI

[8] I. I. Gikhman, A. V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR

[9] Dzh. D. Biggins, “Skhodimost martingalov i bolshie ukloneniya v vetvyaschemsya sluchainom bluzhdanii”, Teoriya veroyatn. i ee primen., 37:2 (1992), 301–306 | MR

[10] A. Ioffe, “A new martingale in branching random walk”, Ann. Appl. Probab., 3:4 (1993), 1145–1150 | MR

[11] N. V. Smorodina, E. B. Yarovaya, “Martingalnyi metod issledovaniya vetvyaschikhsya sluchainykh bluzhdanii”, Uspekhi matem. nauk, 77:5 (2022), 193–194 | DOI | MR | Zbl

[12] N. V. Smorodina, E. B. Yarovaya, “Ob odnoi predelnoi teoreme dlya vetvyaschikhsya sluchainykh bluzhdanii”, Teoriya veroyatn. i ee primen., 68:4 (2023), 779–795 | DOI

[13] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[14] A. D. Venttsel, Kurs teorii sluchainykh protsessov, 2-e izdanie, Nauka, Fizmatlit, M., 1996 | MR

[15] P. Major, Multiple Wiener–Ito Integrals. With Applications to Limit Theorems, Lect. Notes Math., 849, Springer, Berlin–Heidelberg–NY, 1981 | DOI | MR | Zbl

[16] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR

[17] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, 2010

[18] K.-Ch. Chang, X. Wang, X. Wu, “On the spectral theory of positive operators and PDE applications”, Discrete Contin. Dymam. Syst., 40:6 (2020), 3171–3200 | DOI | MR | Zbl

[19] P. P. Zabreiko, S. V. Smitskikh, “Ob odnoi teoreme M. G. Kreina–M. A. Rutmana”, Funkts. analiz i ego prilozh., 13:3 (1979), 81–82 | MR | Zbl