Probabilistic approximation of the Schrödinger equation by complex-valued random processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 17-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A method for probabilistic approximation of the solution of the Cauchy problem for a one-dimensional unperturbed Schrödinger equation by mathematical expectations of functionals of some complex-valued Lévy process is proposed. In contrast to previous papers, we obtain the convergence rate of the constructed approximation to the exact solution for a wider class of initial functions.
@article{ZNSL_2023_526_a1,
     author = {I. A. Alexeev and M. V. Platonova},
     title = {Probabilistic approximation of the {Schr\"odinger} equation by complex-valued random processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--28},
     year = {2023},
     volume = {526},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a1/}
}
TY  - JOUR
AU  - I. A. Alexeev
AU  - M. V. Platonova
TI  - Probabilistic approximation of the Schrödinger equation by complex-valued random processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 17
EP  - 28
VL  - 526
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a1/
LA  - ru
ID  - ZNSL_2023_526_a1
ER  - 
%0 Journal Article
%A I. A. Alexeev
%A M. V. Platonova
%T Probabilistic approximation of the Schrödinger equation by complex-valued random processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 17-28
%V 526
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a1/
%G ru
%F ZNSL_2023_526_a1
I. A. Alexeev; M. V. Platonova. Probabilistic approximation of the Schrödinger equation by complex-valued random processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 17-28. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a1/

[1] I. A. Alekseev, “Ustoichivye sluchainye velichiny s kompleksnym indeksom ustoichivosti, II”, Teoriya veroyatn. i ee primen., 67:4 (2022), 627–648 | DOI

[2] I. A. Alekseev, “Veroyatnostnaya approksimatsiya operatora tipa Rimana–Liuvillya s indeksom ustoichivosti bolshe dvukh”, Zap. nauchn. semin. POMI, 510, 2022, 5–27

[3] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Ob odnoi predelnoi teoreme, svyazannoi s veroyatnostnym predstavleniem resheniya zadachi Koshi s operatorom Shrëdingera”, Zap. nauchn. semin. POMI, 454, 2016, 158–175

[4] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Veroyatnostnaya approksimatsiya operatora evolyutsii”, Funkts. analiz i ego pril., 52:2 (2018), 25–39 | DOI | MR

[5] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[6] Dzh. Kingman, Puassonovskie protsessy, MTsNMO, M., 2007

[7] M. V. Platonova, S. V. Tsykin, “Veroyatnostnaya approksimatsiya resheniya zadachi Koshi dlya uravneniya Shrëdingera vysokogo poryadka”, Teoriya veroyatn. i ee primen., 65:4 (2020), 710–724 | DOI | MR

[8] M. V. Platonova, “Analog formuly Feinmana–Katsa dlya operatora vysokogo poryadka”, Teoriya veroyatn. i ee primen., 67:1 (2022), 81–99 | DOI

[9] A. V. Skorokhod, Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1964