Probabilistic approximation of the Schr\"odinger equation by complex-valued random processes
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 17-28
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A method for probabilistic approximation of the solution of the Cauchy problem for a one-dimensional unperturbed Schrödinger equation by mathematical expectations of functionals of some complex-valued Lévy process is proposed. In contrast to previous papers, we obtain the convergence rate of the constructed approximation to the exact solution for a wider class of initial functions.
			
            
            
            
          
        
      @article{ZNSL_2023_526_a1,
     author = {I. A. Alexeev and M. V. Platonova},
     title = {Probabilistic approximation of the {Schr\"odinger} equation by complex-valued random processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--28},
     publisher = {mathdoc},
     volume = {526},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a1/}
}
                      
                      
                    TY - JOUR AU - I. A. Alexeev AU - M. V. Platonova TI - Probabilistic approximation of the Schr\"odinger equation by complex-valued random processes JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 17 EP - 28 VL - 526 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a1/ LA - ru ID - ZNSL_2023_526_a1 ER -
%0 Journal Article %A I. A. Alexeev %A M. V. Platonova %T Probabilistic approximation of the Schr\"odinger equation by complex-valued random processes %J Zapiski Nauchnykh Seminarov POMI %D 2023 %P 17-28 %V 526 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a1/ %G ru %F ZNSL_2023_526_a1
I. A. Alexeev; M. V. Platonova. Probabilistic approximation of the Schr\"odinger equation by complex-valued random processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 17-28. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a1/
