Probabilistic approximation of the Schr\"odinger equation by complex-valued random processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 17-28

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for probabilistic approximation of the solution of the Cauchy problem for a one-dimensional unperturbed Schrödinger equation by mathematical expectations of functionals of some complex-valued Lévy process is proposed. In contrast to previous papers, we obtain the convergence rate of the constructed approximation to the exact solution for a wider class of initial functions.
@article{ZNSL_2023_526_a1,
     author = {I. A. Alexeev and M. V. Platonova},
     title = {Probabilistic approximation of the {Schr\"odinger} equation by complex-valued random processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--28},
     publisher = {mathdoc},
     volume = {526},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a1/}
}
TY  - JOUR
AU  - I. A. Alexeev
AU  - M. V. Platonova
TI  - Probabilistic approximation of the Schr\"odinger equation by complex-valued random processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 17
EP  - 28
VL  - 526
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a1/
LA  - ru
ID  - ZNSL_2023_526_a1
ER  - 
%0 Journal Article
%A I. A. Alexeev
%A M. V. Platonova
%T Probabilistic approximation of the Schr\"odinger equation by complex-valued random processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 17-28
%V 526
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a1/
%G ru
%F ZNSL_2023_526_a1
I. A. Alexeev; M. V. Platonova. Probabilistic approximation of the Schr\"odinger equation by complex-valued random processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 35, Tome 526 (2023), pp. 17-28. http://geodesic.mathdoc.fr/item/ZNSL_2023_526_a1/