Voir la notice du chapitre de livre
@article{ZNSL_2023_525_a7,
author = {M. V. Platonova},
title = {An analogue of the {Feynman{\textendash}Kac} formula for the multidimensional {Shr\"odinger} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {96--108},
year = {2023},
volume = {525},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a7/}
}
M. V. Platonova. An analogue of the Feynman–Kac formula for the multidimensional Shrödinger equation. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 96-108. http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a7/
[1] Dzh. Glimm, A. Dzhaffe, Matematicheskie metody v kvantovoi fizike, Mir, M., 1984
[2] Yu. L. Daletskii, S. V. Fomin, Mery i differentsialnye uravneniya v funktsionalnykh prostranstvakh, Nauka, M., 1983
[3] N. Danford, Dzh. Shvarts, Lineinye operatory. Obschaya teoriya, Izdatelstvo inostrannoi literatury, M., 1962
[4] P. N. Ievlev, “Veroyatnostnoe predstavlenie resheniya zadachi Koshi dlya mnogomernogo uravneniya Shredingera”, Zap. nauchn. semin. POMI, 466, 2017, 145–158
[5] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Ob odnoi predelnoi teoreme, svyazannoi s veroyatnostnym predstavleniem resheniya zadachi Koshi s operatorom Shredingera”, Zap. nauchn. semin. POMI, 454, 2016, 158–175
[6] I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “Veroyatnostnaya approksimatsiya operatora evolyutsii”, Funkts. analiz i ego pril., 52:2 (2018), 25–39
[7] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972
[8] Dzh. Kingman, Puassonovskie protsessy, MTsNMO, M., 2007
[9] M. V. Platonova, “O veroyatnostnoi approksimatsii odnoi gruppy unitarnykh operatorov”, Zap. nauchn. semin. POMI, 510, 2022, 211–224
[10] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, LENAND, M., 2015