Estimates of stability with respect to the number of summands for distributions of successive sums of i.i.d. vectors
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 86-95
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $X_1, X_2,\dots$ be i.i.d. random vectors in $\mathbf R^d$ with distribution $F$. Then $S_n = X_1+\dots+X_n$ has distribution $F^n$ (degree is understood in the sense of convolutions). Let $ \rho(F,G) = \sup_A |F\{A\} - G\{A\}| $, where the supremum is taken over all convex subsets of $\mathbf R^d$. For any nontrivial distribution $F$ there is $c_1(F)$ such that $ \rho(F^n, F^{n+1})\leq \frac{c_1(F)}{\sqrt n} $ for any natural $n$. The distribution $F$ is called trivial if it is concentrated on a hyperplane that does not contain the origin. Clearly, for such $F$, $ \rho(F^n, F^{n+1}) = 1 $. A similar result for the Prokhorov distance is also formulated. For any $d$-dimensional distribution $F$ there is $c_2(F)$ such that $ (F^n)\{A\}\le (F^{n+1})\{A^{c_2(F)}\}+\frac{c_2(F)}{\sqrt{n}}$ and $(F^{n+1})\{A\}\leq (F^n)\{A^{c_2(F)}\}+\frac{c_2(F)} {\sqrt{n}} $ for all Borel set $ A $ and all natural $n$. Here $A^{\varepsilon }$ is $ \varepsilon $-neighborhood of the set $ A $.
@article{ZNSL_2023_525_a6,
     author = {A. Yu. Zaitsev},
     title = {Estimates of stability with respect to the number of summands for distributions of successive sums of i.i.d. vectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {86--95},
     year = {2023},
     volume = {525},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a6/}
}
TY  - JOUR
AU  - A. Yu. Zaitsev
TI  - Estimates of stability with respect to the number of summands for distributions of successive sums of i.i.d. vectors
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 86
EP  - 95
VL  - 525
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a6/
LA  - ru
ID  - ZNSL_2023_525_a6
ER  - 
%0 Journal Article
%A A. Yu. Zaitsev
%T Estimates of stability with respect to the number of summands for distributions of successive sums of i.i.d. vectors
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 86-95
%V 525
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a6/
%G ru
%F ZNSL_2023_525_a6
A. Yu. Zaitsev. Estimates of stability with respect to the number of summands for distributions of successive sums of i.i.d. vectors. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 86-95. http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a6/

[1] T. V. Arak, A. Yu. Zaitsev, “Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin”, Tr. MIAN SSSR, 174, 1986

[2] R. N. Bhattacharya, R. Ranga Rao, Normal Approximation and Asymptotic Expansions, Wiley, 1976

[3] R. M. Dudley, “Distances of probability measures and random variables”, Ann. Math. Statist., 39:5 (1968), 1563–1572

[4] F. Götze, A. Naumov, V. Spokoiny, V. Ulyanov, “Large ball probabilities, Gaussian comparison and anti-concentration”, Bernoulli, 25:4A (2019), 2538–2563

[5] F. Gëttse, A. Yu. Zaitsev, “Otsenki blizosti svertok veroyatnostnykh raspredelenii na vypuklykh mnogogrannikakh”, Zap. nauchn. semin. POMI, 474, 2018, 108–117

[6] F. Gëttse, A. Yu. Zaitsev, “Skhodimost k beskonechnomernym obobschennym raspredeleniyam Puassona na vypuklykh mnogogrannikakh”, Zap. nauchn. semin. POMI, 501, 2021, 118–125

[7] Ya. S. Golikova, “Ob uluchshenii otsenki rasstoyaniya mezhdu raspredeleniyami posledovatelnykh summ nezavisimykh sluchainykh velichin”, Zap. nauchn. semin. POMI, 474, 2018, 118–123

[8] M. Panov, V. Spokoiny, “Finite sample Bernstein — von Mises theorem for semiparametric problems”, Bayesian Analysis, 10:3 (2015), 665–710

[9] V. V. Sazonov, “On the multi-dimensional central limit theorem”, Sankhy$\rm\bar a$, Ser. A, 30 (1968), 181–204

[10] V. V. Sazonov, Normal Approximation – some Recent Advances, Lecture Notes Math., 879, 1981, 105 pp.

[11] G. Schay, “Nearest random variables with given distributions”, Ann. Probab., 2 (1974), 163–166

[12] V. Strassen, “The existence of probability measures with given marginals”, Ann. Math. Statist., 36 (1965), 423–439

[13] V. V. Yurinskii, “Neravenstvo sglazhivaniya dlya otsenok rasstoyaniya Levi–Prokhorova”, Teoriya veroyatn. i ee primen., 20:1 (1975), 3–12

[14] A. Yu. Zaitsev, “Otsenka blizosti raspredelenii posledovatelnykh summ nezavisimykh odinakovo raspredelennykh sluchainykh vektorov”, Zap. nauchn. semin. LOMI, 97 (1980), 83–87

[15] A. Yu. Zaitsev, “Nekotorye svoistva $n$-kratnykh svertok raspredelenii”, Teoriya veroyatn. i ee primen., 26:1 (1981), 152–156

[16] A. Yu. Zaitsev, “Estimates for the closeness of successive convolutions of multidimensional symmetric distributions”, Probab. Theory Relat. Fields, 79:2 (1988), 175–200